Background
Limited evidence exists on the role of glucose-lowering drugs in patients with COVID-19. Our main objective was to examine the association between in-hospital death and each routine at-home glucose-lowering drug both individually and in combination with metformin in patients with type 2 diabetes mellitus admitted for COVID-19. We also evaluated their association with the composite outcome of the need for ICU admission, invasive and non-invasive mechanical ventilation, or in-hospital death as well as on the development of in-hospital complications and a long-time hospital stay.
Methods
We selected all patients with type 2 diabetes mellitus in the Spanish Society of Internal Medicine’s registry of COVID-19 patients (SEMI-COVID-19 Registry). It is an ongoing, observational, multicenter, nationwide cohort of patients admitted for COVID-19 in Spain from March 1, 2020. Each glucose-lowering drug user was matched with a user of other glucose-lowering drugs in a 1:1 manner by propensity scores. In order to assess the adequacy of propensity score matching, we used the standardized mean difference found in patient characteristics after matching. There was considered to be a significant imbalance in the group if a standardized mean difference > 10% was found. To evaluate the association between treatment and study outcomes, both conditional logit and mixed effect logistic regressions were used when the sample size was ≥ 100.
Results
A total of 2666 patients were found in the SEMI-COVID-19 Registry, 1297 on glucose-lowering drugs in monotherapy and 465 in combination with metformin. After propensity matching, 249 patients on metformin, 105 on dipeptidyl peptidase-4 inhibitors, 129 on insulin, 127 on metformin/dipeptidyl peptidase-4 inhibitors, 34 on metformin/sodium-glucose cotransporter 2 inhibitor, and 67 on metformin/insulin were selected. No at-home glucose-lowering drugs showed a significant association with in-hospital death; the composite outcome of the need of intensive care unit admission, mechanical ventilation, or in-hospital death; in-hospital complications; or long-time hospital stays.
Conclusions
In patients with type 2 diabetes mellitus admitted for COVID-19, at-home glucose-lowering drugs showed no significant association with mortality and adverse outcomes. Given the close relationship between diabetes and COVID-19 and the limited evidence on the role of glucose-lowering drugs, prospective studies are needed.
The significant impact of COVID-19 worldwide has made it necessary to develop tools to identify patients at high risk of severe disease and death. This work aims to validate the RIM Score-COVID in the SEMI-COVID-19 Registry. The RIM Score-COVID is a simple nomogram with high predictive capacity for in-hospital death due to COVID-19 designed using clinical and analytical parameters of patients diagnosed in the first wave of the pandemic. The nomogram uses five variables measured on arrival to the emergency department (ED): age, sex, oxygen saturation, C-reactive protein level, and neutrophil-to-platelet ratio. Validation was performed in the Spanish SEMI-COVID-19 Registry, which included consecutive patients hospitalized with confirmed COVID-19 in Spain. The cohort was divided into three time periods: T1 from February 1 to June 10, 2020 (first wave), T2 from June 11 to December 31, 2020 (second wave, pre-vaccination period), and T3 from January 1 to December 5, 2021 (vaccination period). The model’s accuracy in predicting in-hospital COVID-19 mortality was assessed using the area under the receiver operating characteristics curve (AUROC). Clinical and laboratory data from 22,566 patients were analyzed: 15,976 (70.7%) from T1, 4,233 (18.7%) from T2, and 2,357 from T3 (10.4%). AUROC of the RIM Score-COVID in the entire SEMI-COVID-19 Registry was 0.823 (95%CI 0.819–0.827) and was 0.834 (95%CI 0.830–0.839) in T1, 0.792 (95%CI 0.781–0.803) in T2, and 0.799 (95%CI 0.785–0.813) in T3. The RIM Score-COVID is a simple, easy-to-use method for predicting in-hospital COVID-19 mortality that uses parameters measured in most EDs. This tool showed good predictive ability in successive disease waves.
Supplementary Information
The online version contains supplementary material available at 10.1007/s11739-023-03200-3.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.