Focused on our interest to develop novel antiparasistic agents, the present study was aimed to evaluate the biological activity of an extract of Laurencia johnstonii collected in Baja California Sur, Mexico, against an Acantamoeba castellanii Neff strain. Bioassay-guided fractionation allowed us to identify the amoebicidal diastereoisomers α-bromocuparane (4) and α-isobromocuparane (5). Furthermore, bromination of the inactive laurinterol (1) and isolaurinterol (2) yielded four halogenated derivatives, (6)–(9), which improved the activity of the natural sesquiterpenes. Among them, the most active compound was 3α-bromojohnstane (7), a sesquiterpene derivative which possesses a novel carbon skeleton johnstane.
Primary amoebic encephalitis (PAM) is a lethal disease caused by the opportunistic pathogen, Naegleria fowleri. This amoebic species is able to live freely in warm aquatic habitats and to infect children and young adults when they perform risk activities in these water bodies such as swimming or splashing. Besides the need to increase awareness of PAM which will allow an early diagnosis, the development of fully effective therapeutic agents is needed. Current treatment options are amphotericin B and miltefosine which are not fully effective and also present toxicity issues. In this study, the in vitro activity of various sesquiterpenes isolated from the red alga Laurencia johnstonii were tested against the trophozoite stage of a strain of Naegleria fowleri. Moreover, the induced effects (apoptotic cell death) of the most active compound, laurinterol (1), was evaluated by measuring DNA condensation, damages at the mitochondrial level, cell membrane disruption and production of reactive oxygen species (ROS). The obtained results demonstrated that laurinterol was able to eliminate the amoebae at concentrations of 13.42 ± 2.57 µM and also to induced programmed cell death (PCD) in the treated amoebae. Moreover, since ATP levels were highly affected and laurinterol has been previously reported as an inhibitor of the Na+/K+-ATPase sodium–potassium ion pump, comparison with known inhibitors of ATPases were carried out. Our results points out that laurinterol was able to inhibit ENA ATPase pump at concentrations 100 times lower than furosemide.
Macroalgae represent an important source of bioactive compounds with a wide range of biotechnological applications. Overall, the discovery of effective cytotoxic compounds with pharmaceutical potential is a significant challenge, mostly because they are scarce in nature or their total synthesis is not efficient, while the bioprospecting models currently used do not predict clinical responses. Given this context, we used three-dimensional (3D) cultures of human breast cancer explants to evaluate the antitumoral effect of laurinterol, the major compound of an ethanolic extract of Laurencia johnstonii. To this end, we evaluated the metabolic and histopathological effects of the crude extract of L. johnstonii and laurinterol on Vero and MCF-7 cells, in addition to breast cancer explants. We observed a dose-dependent inhibition of the metabolic activity, as well as morphologic and nuclear changes characteristic of apoptosis. On the other hand, a reduced metabolic viability and marked necrosis areas were observed in breast cancer explants incubated with the crude extract, while explants treated with laurinterol exhibited a heterogeneous response which was associated with the individual response of each human tumor sample. This study supports the cytotoxic and antitumoral effects of laurinterol in in vitro cell cultures and in ex vivo organotypic cultures of human breast cancer explants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.