A growing literature explores intra-urban variation in pollution concentrations. Few studies, however, have examined spatial variation during “peak” hours of the day (e.g., rush hours, inversion conditions), which may have strong bearing for source identification and epidemiological analyses. We aimed to capture “peak” spatial variation across a region of complex terrain, legacy industry, and frequent atmospheric inversions. We hypothesized stronger spatial contrast in concentrations during hours prone to atmospheric inversions and heavy traffic, and designed a 2-year monitoring campaign to capture spatial variation in fine particles (PM2.5) and black carbon (BC). Inversion-focused integrated monitoring (0600–1100 hours) was performed during year 1 (2011–2012) and compared with 1-week 24-h integrated results from year 2 (2012–2013). To allocate sampling sites, we explored spatial distributions in key sources (i.e., traffic, industry) and potential modifiers (i.e., elevation) in geographic information systems (GIS), and allocated 37 sites for spatial and source variability across the metropolitan domain (~388 km2). Land use regression (LUR) models were developed and compared by pollutant, season, and sampling method. As expected, we found stronger spatial contrasts in PM2.5 and BC using inversion-focused sampling, suggesting greater differences in peak exposures across urban areas than is captured by most integrated saturation campaigns. Temporal variability, commercial and industrial land use, PM2.5 emissions, and elevation were significant predictors, but did not more strongly predict concentrations during peak hours.
BackgroundCharacterizing intra-urban variation in air quality is important for epidemiological investigation of health outcomes and disparities. To date, however, few studies have been designed to capture spatial variation during select hours of the day, or to examine the roles of meteorology and complex terrain in shaping intra-urban exposure gradients.MethodsWe designed a spatial saturation monitoring study to target local air pollution sources, and to understand the role of topography and temperature inversions on fine-scale pollution variation by systematically allocating sampling locations across gradients in key local emissions sources (vehicle traffic, industrial facilities) and topography (elevation) in the Pittsburgh area. Street-level integrated samples of fine particulate matter (PM2.5), black carbon (BC), nitrogen dioxide (NO2), sulfur dioxide (SO2), and ozone (O3) were collected during morning rush and probable inversion hours (6-11 AM), during summer and winter. We hypothesized that pollution concentrations would be: 1) higher under inversion conditions, 2) exacerbated in lower-elevation areas, and 3) vary by season.ResultsDuring July - August 2011 and January - March 2012, we observed wide spatial and seasonal variability in pollution concentrations, exceeding the range measured at regulatory monitors. We identified elevated concentrations of multiple pollutants at lower-elevation sites, and a positive association between inversion frequency and NO2 concentration. We examined temporal adjustment methods for deriving seasonal concentration estimates, and found that the appropriate reference temporal trend differs between pollutants.ConclusionsOur time-stratified spatial saturation approach found some evidence for modification of inversion-concentration relationships by topography, and provided useful insights for refining and interpreting GIS-based pollution source indicators for Land Use Regression modeling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.