The extremely elongated morphology of fungal hyphae is dependent on the cell's ability to assemble and maintain polarized growth machinery over multiple cell cycles. The different morphologies of the fungus Candida albicans make it an excellent model organism in which to study the spatiotemporal requirements for constitutive polarized growth and the generation of different cell shapes. In C. albicans, deletion of the landmark protein Rsr1 causes defects in morphogenesis that are not predicted from study of the orthologous protein in the related yeast Saccharomyces cerevisiae, thus suggesting that Rsr1 has expanded functions during polarized growth in C. albicans. Here, we show that Rsr1 activity localizes to hyphal tips by the differential localization of the Rsr1 GTPase-activating protein (GAP), Bud2, and guanine nucleotide exchange factor (GEF), Bud5. In addition, we find that Rsr1 is needed to maintain the focused localization of hyphal polarity structures and proteins, including Bem1, a marker of the active GTP-bound form of the Rho GTPase, Cdc42. Further, our results indicate that tip-localized Cdc42 clusters are associated with the cell's ability to express a hyphal transcriptional program and that the ability to generate a focused Cdc42 cluster in early hyphae (germ tubes) is needed to maintain hyphal morphogenesis over time. We propose that in C. albicans, Rsr1 "fine-tunes" the distribution of Cdc42 activity and that self-organizing (Rsr1-independent) mechanisms of polarized growth are not sufficient to generate narrow cell shapes or to provide feedback to the transcriptional program during hyphal morphogenesis. Fungal hyphae are able to elongate over large distances and must allocate their cellular resources in order to maintain extremely polarized growth for extended periods of time. The multimorphic opportunistic fungal pathogen Candida albicans provides a useful model system in which to investigate the basic cell biological and genetic mechanisms that generate highly polarized cell shapes and the requirements for hyphal development. C. albicans has a true hyphal growth form, as well as pseudohyphal and yeast forms, and reversibly switches between these morphologies depending on environmental conditions (reviewed in reference 1). Yeast cells are ellipsoid, propagate by budding, and undergo cytokinesis and cell separation. Pseudohyphae are more elongated than yeast cells and do not undergo cell separation, resulting in the formation of chains of elongated daughter cells. Hyphae, in contrast, are extremely elongated, narrow cells, and their development can be thought of as two continuous stages, early growth and development of germ tubes (GTs) followed by the development and maintenance of mature hyphae. GTs enter the maintenance phase of polarized growth, transitioning to mature hyphae, after the formation of the first septum, a specialized structure that delimits cellular compartments. Whereas morphogenesis mechanisms in C. albicans yeast and pseudohyphae appear to follow those of the similar morpholo...
These results, obtained with the use of a primary pIEC model, indicate that HMOs reduce virulence characteristics of C. albicans and suggest a role for HMOs in protecting the premature infant intestine from invasion and damage by C. albicans hyphae.
Significance The growth of many cell types combines polarized elongation with directional responses to external cues. We have previously linked Ca 2+ influx with directional growth in fungi and show here that Ca 2+ influx can rescue phenotypes caused by genetic disruption of two Cdc42 GTPase plasma-membrane trafficking pathways that are required for polarity establishment, hence restoring directional polarization. Constitutive activation of Cdc42 reversed the direction of polarization, which was also enhanced by the provision of exogenous Ca 2+ . Our model proposes that Ca 2+ transport amplifies weak directional growth signals specified by activated Cdc42 by promoting Cdc42 trafficking to the plasma membrane, thereby enhancing its directional regulation of polarized growth.
Candida yeasts are common commensals that can cause mucosal disease and life-threatening systemic infections. While many of the components required for defense against Candida albicans infection are well established, questions remain about how various host cells at mucosal sites assess threats and coordinate defenses to prevent normally commensal organisms from becoming pathogenic. Using two Candida species, C. albicans and C. parapsilosis, which differ in their abilities to damage epithelial tissues, we used traditional methods (pathogen CFU, host survival, and host cytokine expression) combined with high-resolution intravital imaging of transparent zebrafish larvae to illuminate host-pathogen interactions at the cellular level in the complex environment of a mucosal infection. In zebrafish, C. albicans grows as both yeast and epithelium-damaging filaments, activates the NF-κB pathway, evokes proinflammatory cytokines, and causes the recruitment of phagocytic immune cells. On the other hand, C. parapsilosis remains in yeast morphology and elicits the recruitment of phagocytes without inducing inflammation. High-resolution mapping of phagocyte-Candida interactions at the infection site revealed that neutrophils and macrophages attack both Candida species, regardless of the cytokine environment. Time-lapse monitoring of single-cell gene expression in transgenic reporter zebrafish revealed a partitioning of the immune response during C. albicans infection: the transcription factor NF-κB is activated largely in cells of the swimbladder epithelium, while the proinflammatory cytokine tumor necrosis factor alpha (TNF-α) is expressed in motile cells, mainly macrophages. Our results point to different host strategies for combatting pathogenic Candida species and separate signaling roles for host cell types. IMPORTANCE In modern medicine, physicians are frequently forced to balance immune suppression against immune stimulation to treat patients such as those undergoing transplants and chemotherapy. More-targeted therapies designed to preserve immunity and prevent opportunistic fungal infection in these patients could be informed by an understanding of how fungi interact with professional and nonprofessional immune cells in mucosal candidiasis. In this study, we intravitally imaged these host-pathogen dynamics during Candida infection in a transparent vertebrate model host, the zebrafish. Single-cell imaging revealed an unexpected partitioning of the inflammatory response between phagocytes and epithelial cells. Surprisingly, we found that in vivo cytokine profiles more closely match in vitro responses of epithelial cells rather than phagocytes. Furthermore, we identified a disconnect between canonical inflammatory cytokine production and phagocyte recruitment to the site of infection, implicating noncytokine chemoattractants. Our study contributes to a new appreciation for the specialization and cross talk among cell types during mucosal infection.
Candida species, prevalent colonizers of the intestinal and genitourinary tracts, are the cause of the majority of invasive fungal infections in humans. Thus, molecular and genetic tools are needed to facilitate the study of their pathogenesis mechanisms. PCR-mediated gene modification is a straightforward and quick approach to generate epitope-tagged proteins to facilitate their detection. In particular, fluorescent protein (FP) fusions are powerful tools that allow visualization and quantitation of both yeast cells and proteins by fluorescence microscopy and immunoblotting, respectively. Plasmids containing FP encoding sequences, along with nutritional marker genes that facilitate the transformation of Candida species, have been generated for the purpose of FP construction and expression in Candida. Herein, we present a strategy for constructing a FP fusion in a Candida species. Plasmids containing the nourseothricin resistance transformation marker gene (NAT1) along with sequences for either green, yellow, or cherry FPs (GFP, YFP, mCherry) are used along with primers that include gene-specific sequences in a polymerase chain reaction (PCR) to generate a FP cassette. This gene-specific cassette has the ability to integrate into the 3'-end of the corresponding gene locus via homologous recombination. Successful in-frame fusion of the FP sequence into the gene locus of interest is verified genetically, followed by analysis of fusion protein expression by microscopy and/or immuno-detection methods. In addition, for the case of highly expressed proteins, successful fusions can be screened for primarily by fluorescence imaging techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.