We have generated mouse transgenic lineages for C3G (tgC3G) and C3GΔCat (tgC3GΔCat, C3G mutant lacking the GEF domain), where the transgenes are expressed under the control of the megakaryocyte and platelet specific PF4 (platelet factor 4) gene promoter. Transgenic platelet activity has been analyzed through in vivo and in vitro approaches, including bleeding time, aggregation assays and flow cytometry. Both transgenes are expressed (RNA and protein) in purified platelets and megakaryocytes and do not modify the number of platelets in peripheral blood. Transgenic C3G animals showed bleeding times significantly shorter than control animals, while tgC3GΔCat mice presented a remarkable bleeding diathesis as compared to their control siblings. Accordingly, platelets from tgC3G mice showed stronger activation in response to platelet agonists such as thrombin, PMA, ADP or collagen than control platelets, while those from tgC3GΔCat animals had a lower response. In addition, we present data indicating that C3G is a mediator in the PKC pathway leading to Rap1 activation. Remarkably, a significant percentage of tgC3G mice presented a higher level of neutrophils than their control siblings. These results indicate that C3G plays an important role in platelet clotting through a mechanism involving its GEF activity and suggest that it might be also involved in neutrophil development.
Purpose: Cancer cells show higher levels of reactive oxygen species (ROS) than normal cells and increasing intracellular ROS levels are becoming a recognized strategy against tumor cells. Thus, diminishing ROS levels could be also detrimental to cancer cells. We surmise that avoiding ROS generation would be a better option than quenching ROS with antioxidants. Chronic myelogenous leukemia (CML) is triggered by the expression of BCR-ABL kinase, whose activity leads to increased ROS production, partly through NADPH oxidases. Here, we assessed NADPH oxidases as therapeutic targets in CML.Experimental Design: We have analyzed the effect of different NADPH oxidase inhibitors, either alone or in combination with BCR-ABL inhibitors, in CML cells and in two different animal models for CML.Results: NADPH oxidase inhibition dramatically impaired the proliferation and viability of BCR-ABLexpressing cells due to the attenuation of BCR-ABL signaling and a pronounced cell-cycle arrest. Moreover, the combination of NADPH oxidase inhibitors with BCR-ABL inhibitors was highly synergistic. Two different animal models underscore the effectiveness of NADPH oxidase inhibitors and their combination with BCR-ABL inhibitors for CML targeting in vivo.Conclusion: Our results offer further therapeutic opportunities for CML, by targeting NADPH oxidases. In the future, it would be worthwhile conducting further experiments to ascertain the feasibility of translating such therapies to clinical practice. Clin Cancer Res; 20(15); 4014-25. Ó2014 AACR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.