The paper gives an account of the machined surface roughness investigation based on the features of a digital image taken subsequent to the technological operation of milling of aluminium alloy Al6060. The data used for investigation were obtained by mixed-level factorial design with two replicates. Input variables (factors) are represented by the face milling basic machining parameters: spindle speed (at five levels: 2000; 3500; 5000; 6500; 8000 rev/min, respectively), feed per tooth (at six levels: 0.025; 0.1; 0.175; 0.25; 0.325; 0.4 mm/tooth, respectively) and depth of cut (at two levels: 1; 2 mm, respectively). Output variable or response is the most frequently used surface roughness parameter -arithmetic average of the roughness profile, Ra. Digital image of the machined surface is provided for every test sample. Based on experimental design and obtained results of roughness measuring, a base has been created of input data (features) extracted from digital images of the samples' machined surfaces. This base was later used for generating the fuzzy inference system for prediction of the surface roughness using the adaptive neuro-fuzzy inference system (ANFIS). Assessing error, i.e. comparison of the assessed value Ra provided by the system with real Ra values, is expressed with the normalized root mean square error (NRMSE) and it is 0.0698 (6.98 %).
In investigating thermally sprayed Ni-based self-fluxing alloy coatings, widely applied under conditions of wear, corrosion, and high temperatures, designed experiments and statistical methods as a basis for modeling and optimization have become an important tool in making valid and comparable conclusions. Therefore, this paper gives an overview of investigating Ni-based self-fluxing alloy coatings deposited by thermal spraying by the use of designed experiments and statistical methods. The investigation includes the period of the last two decades and covers the treatments of flame spraying, high-velocity oxy/air fuel spraying, plasma spraying, plasma-transferred arc welding, and laser cladding. The main aim was to separate input variables, as well as measured responses, and to point out the importance of correct application of statistical design of experiment. After the review of the papers, it was concluded that investigators have used the process knowledge to analyze and interpret the results of the statistical analysis of experimental data, which is in fact the best way of using the design of experiment in every research. Nevertheless, more attention should be given to correct planning and conducting the experiments to derive the models suitable for the prediction of measured response and which could be an appropriate input for single- or multi-objective optimization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.