An international project developed, quality-tested, and determined isotope-δ values of 19 new organic reference materials (RMs) for hydrogen, carbon, and nitrogen stable isotope-ratio measurements, in addition to analyzing pre-existing RMs NBS 22 (oil), IAEA-CH-7 (polyethylene foil), and IAEA-600 (caffeine). These new RMs enable users to normalize measurements of samples to isotope-δ scales. The RMs span a range of δ 2 H VSMOW-SLAP values from-210.8 to +397.0 mUr or ‰, for δ 13 C VPDB-LSVEC from-40.81 to +0.49 mUr, and for δ 15 N Air from-5.21 to +61.53 mUr. Many of the new RMs are amenable to gas and liquid chromatography. The RMs include triads of isotopically contrasting caffeines, C 16 nalkanes, n-C 20-fatty acid methyl esters (FAMEs), glycines, and L-valines, together with polyethylene powder and string, one n-C 17-FAME, a vacuum oil (NBS 22a) to replace NBS 22 oil, and a 2 H-enriched vacuum oil. Eleven laboratories from 7 countries used multiple analytical approaches and instrumentation for 2-point isotopic calibrations against international primary measurement standards. The use of reference waters in silver tubes allowed direct calibration of δ 2 H values of organic materials against isotopic reference waters following the principle of identical treatment. Bayesian statistical analysis yielded the mean values reported here. New RMs are numbered from USGS61 through USGS78, in addition to NBS 22a. Due to exchangeable hydrogen, amino acid RMs currently are recommended only for carbon-and nitrogen-isotope measurements. Some amino acids contain 13 C and carbon-bound organic 2 Henrichments at different molecular sites to provide RMs for potential site-specific isotopic analysis in future studies.
Humic substances (HS) acting as photosensitizers can generate a variety of reactive species, such as OH radicals and excited triplet states ((3)HS*), promoting the degradation of organic compounds. Here, we apply compound-specific stable isotope analysis (CSIA) to characterize photosensitized mechanisms employing fuel oxygenates, such as methyl tert-butyl ether (MTBE) and ethyl tert-butyl ether (ETBE), as probes. In oxygenated aqueous media, Λ (Δδ(2)H/Δδ(13)C) values of 23 ± 3 and 21 ± 3 for ETBE obtained by photosensitization by Pahokee Peat Humic Acid (PPHA) and Suwannee River Fulvic Acid (SRFA), respectively, were in the range typical for H-abstraction by OH radicals generated by photolysis of H2O2 (Λ = 24 ± 2). However, (3)HS* may become a predominant reactive species upon the quenching of OH radicals (Λ = 14 ± 1), and this process can also play a key role in the degradation of ETBE by PPHA photosensitization in deoxygenated media (Λ = 11 ± 1). This is in agreement with a model photosensitization by rose bengal (RB(2-)) in deoxygenated aqueous solutions resulting in one-electron oxidation of ETBE (Λ = 14 ± 1). Our results demonstrate that the use of CSIA could open new avenues for the assessment of photosensitization pathways.
Multielemental stable isotope analysis of persistent organic pollutants (POPs) has the potential to characterize sources, sinks, and degradation processes in the environment. To verify the applicability of this approach for source identification of hexachlorocyclohexane (HCHs), we provide a data set of carbon, hydrogen, and chlorine stable isotope ratios (δC, δH, δCl) of its main stereoisomers (α-, β-, δ- and γ-HCHs) from a sample collection based on worldwide manufacturing. This sample collection comprises production stocks, agricultural and pharmaceutical products, chemical waste dumps, and analytical-grade material, covering the production time period from the late 1960s until now. Stable isotope ratios of HCHs cover the ranges from -233‰ to +1‰, from -35.9‰ to -22.7‰, and from -6.69‰ to +0.54‰ for δH, δC, and δCl values, respectively. Four groups of samples with distinct multielemental stable isotope fingerprints were differentiated, most probably as a result of purification and isolation processes. No clear temporal trend in the isotope compositions of HCHs was found at the global scale. The multielemental stable isotope fingerprints facilitate the source identification of HCHs at the regional scale and can be used to assess transformation processes. The data set and methodology reported herein provide basic information for the assessment of environmental field sites contaminated with HCHs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.