Modulation of the electronic band profiles of wide band gap GaN semiconductors is achieved by the macromolecular dipole potentials exerted from ordered monolayers of synthetic, nonbiological aldehyde terminated helical peptides deposited on wet chemically oxidized GaN surfaces functionalized with aminosilanes. The selective coupling of either N‐ or C‐terminal to the amino‐terminated surface enables one to control the direction of the dipole moment, while the number of amino acids determines its magnitude. After confirming the formation of highly ordered peptide monolayers, the impact of macromolecular dipole potentials is quantified by electrochemical impedance spectroscopy. Moreover, the chronoamperometry measurements of ferrocene‐terminated peptides suggest that the transfer of electrons injected from ferrocene follows inelastic hopping, while the current responses of peptides with no ferrocene moieties are purely capacitive. Finally, the same functionalization steps are transferred to GaN/AlGaN/GaN high electron mobility transistor structures. Stable and quantitative modulation of the current–voltage characteristics of the 2D electron gas by the deposition of bioinspired peptides is a promising strategy for the macromolecular dipole engineering of GaN semiconductors.
The application of InGaN/GaN nanowire heterostructure arrays as photonic probes for dynamic imaging of biochemical and cellular processes in an incident light fluorescence microscope is demonstrated. The photoluminescence intensity of InGaN/GaN nanowires sensitively depends on the pH value of the surrounding solution, making them suitable probes for the optical detection of biochemical processes accompanied by local pH variations. Grown on a conductive substrate, the nanowire arrays can be operated in a well-defined electrochemical working point with high sensitivity and stability. The achievable pH and bias resolution as well as signal-to-noise ratio are assessed as a function of the working point and for different integration times. A bias resolution of 1 mV and a pH resolution of 0.03 are achieved at a time resolution below 25 ms. The application for dynamic imaging of the activity of isolated intestinal crypts from Wistar rats is demonstrated. Here, the pH change in the vicinity of the crypt is quantified and attributed to the activity of the sodium-proton exchanger (NHE). Imaging of the effect of amiloride and NH 4 Cl on its activity is demonstrated with a spatial resolution of <0.63 µm and reveals that NH 4 Cl-induced NHE activation preferentially occurs in the upper part of the crypt.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.