To test whether pulmonary and extrapulmonary acute lung injury (ALI) of identical mechanical compromise would express diverse morphological patterns and immunological pathways. For this purpose, a model of pulmonary (p) and extrapulmonary (exp) ALI with similar functional changes was developed and pulmonary morphology (light and electron microscopy), cytokines levels, and neutrophilic infiltration in the bronchoalveolar lavage fluid (BALF), elastic and collagen fiber content in the alveolar septa, and neutrophil apoptosis in the lung parenchyma were analyzed. BALB/c mice were divided into four groups. In control groups, saline was intratracheally (it, 0.05 ml) instilled and intraperitoneally (ip, 0.5 ml) injected, respectively. In the ALIp and ALIexp groups, mice received E. coli lipopolysaccharide (10 microg it and 125 microg ip, respectively). The changes in lung resistive and viscoelastic pressures and in static elastance, alveolar collapse, and cell content in lung tissue were similar in the ALIp and ALIexp groups. The ALIp group presented a threefold increase in KC (murine function homolog to IL-8) and IL-10 levels in the BALF in relation to ALIexp, whereas IL-6 level showed a twofold increase in ALIp. Neutrophils in the BALF were more frequent in ALIp than in ALIexp. ALIp showed more extensive injury of alveolar epithelium, intact capillary endothelium, and apoptotic neutrophils, whereas the ALIexp group presented interstitial edema and intact type I and II cells and endothelial layer. In conclusion, given the same pulmonary mechanical dysfunction independently of the etiology of ALI, insult in pulmonary epithelium yielded more pronounced inflammatory responses, which induce ultrastructural morphological changes.
The sun is the most important and universal source of non-ionizing radiation shed on human populations. Life evolved on Earth bathed by this radiation. Solar UV damages cells, leading to deleterious conditions such as photoaging and carcinogenesis in human skin. During the process of evolution, the cells selected dark- and light-dependent repair mechanisms as a defence against these hazardous effects. This study describes the induction by non-coherent infrared radiation (700-2000 nm), in the absence of rising temperature, of a strong cellular defense against solar UV cytotoxicity as well as induction of cell mitosis. Blocking mitoses with arabinoside-cytosine or protein synthesis with cycloheximide did not abolish the protection, leading to the conclusion that this protection is independent of cell division and of protein neosynthesis. The protection provided by infrared radiation against solar UV radiation is shown to be a long-lasting (at least 24 h) and cumulatif phenomenon. Infrared radiation does not protect the lipids in cellular membranes against UVA induced peroxidation. The protection is not mediated by heat shock proteins. Living organisms on the Earth's surface are bathed by infrared radiation every day, before being submitted to solar UV. Thus, we propose that this as yet undescribed natural process of cell protection against solar UV, acquired and preserved through evolutional selection, plays an important role in life maintenance. Understanding and controlling this mechanism could provide important keys to the prevention of solar UV damage of human skin.
Treatment with direct electric current (DC) can inhibit tumor growth in several systems. To evaluate the cellular reactions generated by this treatment, we stimulated mouse mastocytoma P815 cells with DC and examined their viability and ultrastructural characteristics, as well as the effect of DC on surface carbohydrate expression. DC treatment affected cell viability and caused marked alterations in vital structures of P815 cells. Alterations varied depending on the duration of stimulation and polarity of electrode. Anodic and cathodic treatments caused decrease in cell viability, although the latter was more effective in generating cell lysis. DC stimulation also induced changes such as membrane damage, alterations in cell shape and chromatin organization, mitochondrial swelling and condensation, cytoplasmic swelling, and matrix rarefaction. Stimulation of P815 cells without contact with electrodes produced no alterations, suggesting that this contact might be essential for the occurrence of the cellular modifications. DC treatment also altered the membrane distribution of anionic sites of P815 cells, as well as the surface carbohydrate exposition, involving a diminished binding of Concanavalin A to the cell surface after cathodic stimulation, and an increased binding of sialic acid- and fucose-specific lectins after anodic treatment. In this work we describe important cellular targets for the action of DC, which may contribute to the understanding of the mechanisms by which DC supresses several kinds of tumors.
We have previously observed that preirradiation with naturally occurring doses of near-infrared (IR) protects normal human dermal fibroblasts from ultraviolet (UV) cytotoxicity in vitro. This effect was observed in temperature-controlled conditions, without heat shock protein (Hsp72-70) induction. Moreover, IR inhibited UVB-induced apoptosis by modulating the Bcl2/Bax balance, pointing to a role of p53. Here, we show for the first time that p53-deficient SaOs cells are not protected from UVB cytotoxicity by IR preirradiation, suggesting that the response to IR is p53-dependent. Thus, we investigated the effect of IR on the p53 signaling pathway. Normal human dermal fibroblasts exposed in vitro to IR accumulated p53 protein, involving p53 stabilization and phosphorylation of serine 15 (Ser15) and Ser20. IR-induced p53 accumulation correlated with increased expression of p21 and GADD45, showing that IR also stimulates p53 transcriptional activity. By modulating UVB-induced targets of the p53 signaling pathway, IR irradiation appears to anticipate the UVB response and to prepare cells to better resist subsequent UV-induced stress. This is reinforced by the fact that IR preirradiation reduces the formation of UVB-induced thymine dimers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.