Primate genomes encode a variety of innate immune strategies to defend themselves against retroviruses. One of these, TRIM5␣, can restrict diverse retroviruses in a species-specific manner. Thus, whereas rhesus TRIM5␣ can strongly restrict HIV-1, human TRIM5␣ only has weak HIV-1 restriction. The biology of TRIM5␣ restriction suggests that it is locked in an antagonistic conflict with the proteins encoding the viral capsid. Such antagonistic interactions frequently result in rapid amino acid replacements at the proteinprotein interface, as each genetic entity vies for evolutionary dominance. By analyzing its evolutionary history, we find strong evidence for ancient positive selection in the primate TRIM5␣ gene. This selection is strikingly variable with some of the strongest selection occurring in the human lineage. This history suggests that TRIM5␣ evolution has been driven by antagonistic interactions with a wide variety of viruses and endogenous retroviruses that predate the origin of primate lentiviruses. A 13-aa ''patch'' in the SPRY protein domain bears a dense concentration of positively selected residues, potentially implicating it as an antiviral interface. By using functional studies of chimeric TRIM5␣ genes, we show that this patch is generally essential for retroviral restriction and is responsible for most of the species-specific antiretroviral restriction activity. Our study highlights the power of evolutionary analyses, in which positive selection identifies not only the age of genetic conflict but also the interaction interface where this conflict plays out.capsid ͉ human endogenous retroviruses ͉ HIV type 1 ͉ SPRY
Host genomes have adopted several strategies to curb the proliferation of transposable elements and viruses. A recently discovered novel primate defense against retroviral infection involves a single-stranded DNA-editing enzyme, APOBEC3G, that causes hypermutation of HIV. The HIV-encoded virion infectivity factor (Vif) protein targets APOBEC3G for destruction, setting up a genetic conflict between the APOBEC3G and Vif genes. This kind of conflict leads to rapid fixation of mutations that alter amino acids at the protein–protein interface, referred to as positive selection. We show that the APOBEC3G gene has been subject to strong positive selection throughout the history of primate evolution. Unexpectedly, this selection appears more ancient than, and is likely only partially caused by, modern lentiviruses. Furthermore, five additional APOBEC genes in the human genome appear to be engaged in similar genetic conflicts, displaying some of the highest signals for positive selection in the human genome. Despite being only recently discovered, editing of RNA and DNA may thus represent an ancient form of host defense in primate genomes.
A major limitation of high-throughput DNA sequencing is the high rate of erroneous base calls produced. For instance, Illumina sequencing machines produce errors at a rate of ∼0.1-1 × 10 −2 per base sequenced. These technologies typically produce billions of base calls per experiment, translating to millions of errors. We have developed a unique library preparation strategy, "circle sequencing," which allows for robust downstream computational correction of these errors. In this strategy, DNA templates are circularized, copied multiple times in tandem with a rolling circle polymerase, and then sequenced on any high-throughput sequencing machine. Each read produced is computationally processed to obtain a consensus sequence of all linked copies of the original molecule. Physically linking the copies ensures that each copy is independently derived from the original molecule and allows for efficient formation of consensus sequences. The circlesequencing protocol precedes standard library preparations and is therefore suitable for a broad range of sequencing applications. We tested our method using the Illumina MiSeq platform and obtained errors in our processed sequencing reads at a rate as low as 7.6 × 10 −6 per base sequenced, dramatically improving the error rate of Illumina sequencing and putting error on par with low-throughput, but highly accurate, Sanger sequencing. Circle sequencing also had substantially higher efficiency and lower cost than existing barcode-based schemes for correcting sequencing errors.next-generation sequencing | barcoding | rare variants
Ribosome profiling produces snapshots of the locations of actively translating ribosomes on messenger RNAs. These snapshots can be used to make inferences about translation dynamics. Recent ribosome profiling studies in yeast, however, have reached contradictory conclusions regarding the average translation rate of each codon. Some experiments have used cycloheximide (CHX) to stabilize ribosomes before measuring their positions, and these studies all counterintuitively report a weak negative correlation between the translation rate of a codon and the abundance of its cognate tRNA. In contrast, some experiments performed without CHX report strong positive correlations. To explain this contradiction, we identify unexpected patterns in ribosome density downstream of each type of codon in experiments that use CHX. These patterns are evidence that elongation continues to occur in the presence of CHX but with dramatically altered codon-specific elongation rates. The measured positions of ribosomes in these experiments therefore do not reflect the amounts of time ribosomes spend at each position in vivo. These results suggest that conclusions from experiments in yeast using CHX may need reexamination. In particular, we show that in all such experiments, codons decoded by less abundant tRNAs were in fact being translated more slowly before the addition of CHX disrupted these dynamics.
TRIM5α provides a cytoplasmic block to retroviral infection, and orthologs encoded by some primates are active against HIV. Here, we present an evolutionary comparison of the TRIM5 gene to its closest human paralogs: TRIM22, TRIM34, and TRIM6. We show that TRIM5 and TRIM22 have a dynamic history of gene expansion and loss during the evolution of mammals. The cow genome contains an expanded cluster of TRIM5 genes and no TRIM22 gene, while the dog genome encodes TRIM22 but has lost TRIM5. In contrast, TRIM6 and TRIM34 have been strictly preserved as single gene orthologs in human, dog, and cow. A more focused analysis of primates reveals that, while TRIM6 and TRIM34 have evolved under purifying selection, TRIM22 has evolved under positive selection as was previously observed for TRIM5. Based on TRIM22 sequences obtained from 27 primate genomes, we find that the positive selection of TRIM22 has occurred episodically for approximately 23 million years, perhaps reflecting the changing pathogenic landscape. However, we find that the evolutionary episodes of positive selection that have acted on TRIM5 and TRIM22 are mutually exclusive, with generally only one of these genes being positively selected in any given primate lineage. We interpret this to mean that the positive selection of one gene has constrained the adaptive flexibility of its neighbor, probably due to genetic linkage. Finally, we find a striking congruence in the positions of amino acid residues found to be under positive selection in both TRIM5α and TRIM22, which in both proteins fall predominantly in the β2-β3 surface loop of the B30.2 domain. Astonishingly, this same loop is under positive selection in the multiple cow TRIM5 genes as well, indicating that this small structural loop may be a viral recognition motif spanning a hundred million years of mammalian evolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.