While moderate acute exercise has been associated with strong anti-inflammatory mechanisms, strenuous exercise has been linked to deleterious inflammatory perturbations. It is therefore fundamental to elucidate the mechanisms that regulate the exercise-induced inflammatory cascade. Information on novel regulators such as circulating inflammatory microRNAs (c-inflammamiRs) is incomplete. In this study, we evaluated the response of a panel of c-inflammamiRs to different doses of acute aerobic exercise. We first studied the exercise-induced inflammatory cascade in serum samples of nine active middle-aged males immediately before and after (0 h, 24 h, 72 h) 10-km, half-marathon, and marathon races. Next, we analyzed the circulating profile of 106 specific c-inflammamiRs immediately before) and after (0 h, 24 h) 10-km (low inflammatory response) and marathon (high inflammatory response) races. Analysis of classical inflammatory parameters revealed a dose-dependent effect of aerobic exercise on systemic inflammation, with higher levels detected after marathon. We observed an increase in miR-150-5p immediately after the 10-km race. Levels of 12 c-inflammamiRs were increased immediately after the marathon (let-7d-3p, let-7f-2-3p, miR-125b-5p, miR-132-3p, miR-143-3p, miR-148a-3p, miR-223-3p, miR-223-5p, miR-29a-3p, miR-34a-5p, miR-424-3p, and miR-424-5p). c-inflammamiRs returned to basal levels after 24 h. Correlation and in silico analyses supported a close association between the observed c-inflammamiR pattern and regulation of the inflammatory process. In conclusion, we found that different doses of acute aerobic exercise induced a distinct and specific c-inflammamiR response, which may be associated with control of the exercise-induced inflammatory cascade. Our findings point to c-inflammamiRs as potential biomarkers of exercise-induced inflammation, and hence, exercise dose.
Consumption of the long-chain ω-3 (n-3) polyunsaturated fatty acid docosahexaenoic acid (DHA) is associated with a reduced risk of cardiovascular disease and greater chemoprevention. However, the mechanisms underlying the biologic effects of DHA remain unknown. It is well known that microRNAs (miRNAs) are versatile regulators of gene expression. Therefore, we aimed to determine if the beneficial effects of DHA may be modulated in part through miRNAs. Loss of dicer 1 ribonuclease type III (DICER) in enterocyte Caco-2 cells supplemented with DHA suggested that several lipid metabolism genes are modulated by miRNAs. Analysis of miRNAs predicted to target these genes revealed several miRNA candidates that are differentially modulated by fatty acids. Among the miRNAs modulated by DHA were miR-192 and miR-30c. Overexpression of either miR-192 or miR-30c in enterocyte and hepatocyte cells suggested an effect on the expression of genes related to lipid metabolism, some of which were confirmed by endogenous inhibition of these miRNAs. Our results show in enterocytes that DHA exerts its biologic effect in part by regulating genes involved in lipid metabolism and cancer. Moreover, this response is mediated through miRNA activity. We validate novel targets of miR-30c and miR-192 related to lipid metabolism and cancer including nuclear receptor corepressor 2, isocitrate dehydrogenase 1, DICER, caveolin 1, ATP-binding cassette subfamily G (white) member 4, retinoic acid receptor β, and others. We also present evidence that in enterocytes DHA modulates the expression of regulatory factor X6 through these miRNAs. Alteration of miRNA levels by dietary components in support of their pharmacologic modulation might be valuable in adjunct therapy for dyslipidemia and other related diseases.
Breast cancer (BC) remains the leading cause of cancer-related deaths among women, and the chances to develop it are duplicated by obesity. Still, the impact of obesity during BC progression remains less understood. We investigated the role of obesity in tumor progression using the murine model of 4T1 mammary carcinoma in BALB/c female mice, previously high-fat-diet (HFD) fed. HFD induced obesity, metabolic impairment, and high serum and fat leptin levels. After injection of 4T1-cells, HFD-mice accelerated tumor progression and metastasis. 4T1-cells found within HFD-mice metastatic niches presented higher clonogenic potential. 4T1-cells treated in vitro with fat-conditioned medium derived from HFD-mice, increased migration capacity through CXCL12 and CCL25 gradients. In HFD-mice, the infiltration and activation of immune cells into tumor-sentinel lymph nodes was overall reduced, except for activated CD4+ T cells expressing low CD25 levels. Within the bone marrow, the levels of haematopoiesis-related IL-6 and TNF-α decreased after 4T1-cells injection in HFD-mice whereas increased in the controls, suggesting that upregulation of both cytokines, regardless of the tumor, is disrupted by obesity. Finally, the expression of genes for leptin, CXCR4, and CCR9 (receptors of CXCL12 and CCL25, respectively) was negatively correlated with the infiltration of CD8 T cells in human triple-negative BC tumors from obese patients compared to non-obese. Together, our data present early evidence of systemic networks triggered by obesity that promote BC progression to the metastatic niches. Targeting these pathways might be useful to prevent the rapid BC progression observed among obese patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.