Devising strategies for the controlled injection of functional nanoparticles and reagents into living cells paves the way for novel applications in nanosurgery, sensing, and drug delivery. Here, we demonstrate the light-controlled guiding and injection of plasmonic Janus nanopens into living cells. The pens are made of a gold nanoparticle attached to a dielectric alumina shaft. Balancing optical and thermophoretic forces in an optical tweezer allows single Janus nanopens to be trapped and positioned on the surface of living cells. While the optical injection process involves strong heating of the plasmonic side, the temperature of the alumina stays significantly lower, thus allowing the functionalization with fluorescently labeled, single-stranded DNA and, hence, the spatially controlled injection of genetic material with an untethered nanocarrier.
Context. All-sky observations show both Galactic and non-Galactic diffuse emission, for example from interstellar matter or the cosmic microwave background (CMB). The decomposition of the emission into different underlying radiative components is an important signal reconstruction problem. Aims. We aim to reconstruct radiative all-sky components using spectral data, without incorporating knowledge about physical or spatial correlations. Methods. We built a self-instructing algorithm based on variational autoencoders following three steps: (1) We stated a forward model describing how the data set was generated from a smaller set of features, (2) we used Bayes' theorem to derive a posterior probability distribution, and (3) we used variational inference and statistical independence of the features to approximate the posterior. From this, we derived a loss function and optimized it with neural networks. The resulting algorithm contains a quadratic error norm with a self-adaptive variance estimate to minimize the number of hyperparameters. We trained our algorithm on independent pixel vectors, each vector representing the spectral information of the same pixel in 35 Galactic all-sky maps ranging from the radio to the γ-ray regime.Results. The algorithm calculates a compressed representation of the input data. We find the feature maps derived in the algorithm's latent space show spatial structures that can be associated with all-sky representations of known astrophysical components. Our resulting feature maps encode (1) the dense interstellar medium (ISM), (2) the hot and dilute regions of the ISM, and (3) the CMB, without being informed about these components a priori. Conclusions. We conclude that Bayesian signal reconstruction with independent Gaussian latent space statistics is sufficient to reconstruct the dense and the dilute ISM, as well as the CMB, from spectral correlations only. The computational approximation of the posterior can be performed efficiently using variational inference and neural networks, making them a suitable approach to probabilistic data analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.