Leptin, a cytokine mainly produced by adipocytes, seems to play a crucial role in mammary carcinogenesis. In the present study, we explored the mechanism of leptin-mediated promotion of breast tumor growth using xenograft MCF-7 in 45-dayold female nude mice, and an in vitro model represented by MCF-7 three-dimensional cultures. Xenograft tumors, obtained only in animals with estradiol (E 2 ) pellet implants, doubled control value after 13 weeks of leptin exposure. In three-dimensional cultures, leptin and/or E 2 enhanced cellcell adhesion. This increased aggregation seems to be dependent on E-cadherin because it was completely abrogated in the presence of function-blocking E-cadherin antibody or EGTA, a calcium-chelating agent. In three-dimensional cultures, leptin and/or E 2 treatment significantly increased cell growth, which was abrogated when E-cadherin function was blocked. These findings well correlated with an increase of mRNA and protein content of E-cadherin in three-dimensional cultures and in xenografts. In MCF-7 cells both hormones were able to activate E-cadherin promoter. Mutagenesis studies, electrophoretic mobility shift assay, and chromatin immunoprecipitation assays revealed that cyclic AMP-responsive element binding protein and Sp1 motifs, present on E-cadherin promoter, were important for the up-regulatory effects induced by both hormones on E-cadherin expression in breast cancer MCF-7 cells. In conclusion, the present study shows how leptin is able to promote tumor cell proliferation and homotypic tumor cell adhesion via an increase of E-cadherin expression. This combined effect may give reasonable emphasis to the important role of this cytokine in stimulating primary breast tumor cell growth and progression, particularly in obese women. [Cancer Res 2007;67(7):3412-21]
MicroRNAs (miRNAs) are single-stranded RNAs of 18-25 nucleotides that regulate gene expression at the post-transcriptional level. They are involved in many physiological and pathological processes, including cell proliferation, apoptosis, development and carcinogenesis. Because of the central role of miRNAs in the regulation of gene expression, their expression needs to be tightly controlled. Here, we summarize the different mechanisms of epigenetic regulation of miRNAs, with a particular focus on DNA methylation and histone modification.
Since tumor-draining pulmonary vein blood (PV) is enriched in tumor-secreted products, we hypothesized that it would also be enriched in tumor-derived exosomes, which would be important in the metastasis process. We characterized exosomes from PV of 61 resected non-small cell lung cancer (NSCLC) patients to evaluate its potential as relapse biomarkers. Exosomes were characterized using transmission electron microscopy, western blot and nanoparticle tracking analysis and we examined time to relapse (TTR) and overall survival (OS). Differences between PV and peripheral vein were found. PV was enriched in smaller exosomes than the paired peripheral vein (p = 0.01). Moreover, PV exosome size mode was able to identify relapsed patients (Area under the curve [AUC] = 0.781; 95%CI: 0.6641–0.8978), in whom exosome size was smaller (<112 nm; p < 0.001). The combination of PV exosome size and N (lymph node involvement) showed an AUC of 0.89 (95%CI: 0.80–0.97). Moreover, smaller PV exosome size was associated with shorter TTR (28.3 months vs. not reached, p < 0.001) and OS (43.9 months vs. not reached, p = 0.009). Multivariate analyses identified PV exosome size and stage as independent prognostic markers for TTR and OS. PV exosome size is a promising relapse biomarker after surgery that can add valuable information to clinical variables.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.