Arrhythmia is one of the causes of sudden infant death, and it is very important to detect fetal arrhythmia for fetal well-being. Fetal electrocardiogram (FECG) is one of the methods to detect a heartbeat. Fetal arrhythmia can be detected based on the heartbeat detection results from FECG signals such as heartbeat intervals. However, the accuracy of arrhythmia detection easily degrades depending on the accuracy of heartbeat detection. In this paper, we propose a deep learning-based fetal arrhythmia detection method using FECG signals. Recently, arrhythmia detection methods using adult ECG signals have achieved a high arrhythmia detection accuracy based on deep learning. Motivated by this fact, in the proposed method, the acquired FECG signals are segmented, and the segments are input into a deep learning model that classifies them into normal or arrhythmia ones. Based on the classification results of multiple segments, a subject is judged as a healthy or arrhythmia subject. Each segment of the training data is divided into three categories based on the estimated heartbeat interval: (i) normal, (ii) arrhythmia, and (iii) a segment that could be both normal and arrhythmic. Only segments labeled as normal or arrhythmia are used for training a deep learning model to achieve a higher classification accuracy of the model. Through these procedures, the proposed method detects fetal arrhythmia with fewer effects of heartbeat detection results. The experimental results show that the proposed method achieves 96.2% accuracy, 100% specificity, and 100% recall, improving the values of conventional methods based on heartbeat detection and feature detection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.