The optical properties of pig heart tissue were measured after in vivo ablation therapy had been performed during open-heart surgery. In vitro samples of normal and ablated tissue were subjected to measurements with an optically integrating sphere set-up in the region 470-900 nm. Three independent measurements were made: total transmittance, total reflectance and collimated transmittance, which made it possible to extract the absorption and scattering coefficients and the scattering anisotropy factor g, using an inverse Monte Carlo model. Between 470 and 700 nm, only the reduced scattering coefficient and absorption could be evaluated. The absorption spectra were fitted to known tissue chromophore spectra, so that the concentrations of haemoglobin and myoglobin could be estimated. The reduced scattering coefficient was compared with Mie computations to provide Mie equivalent average radii. Most of the absorption was from myoglobin, whereas haemoglobin absorption was negligible. Metmyoglobin was formed in the ablated tissue, which could yield a spectral signature to distinguish the ablated tissue with a simple optical probe to monitor the ablation therapy. The reduced scattering coefficient increased by, on average, 50% in the ablated tissue, which corresponded to a slight decrease in the Mie equivalent radius.
A compact fluorosensor with a fiber-optic measurement probe was developed, employing a continuous-wave violet diode laser as an exciting source and an integrated digital spectrometer for the monitoring of fluorescence signatures. The system has the dimensions 22×13×8 cm3, and features 5 nm spectral resolution and an excellent detectivity. Results from measurements on vegetation and human premalignant skin lesions are reported, illustrating the potential of the instrument.
Kinetics of the superficial perfusion and temperature in connection with photodynamic therapy of basal cell carcinomas using esterified and non-esterified 5-aminolaevulinic acid.Pålsson, Sara; Gustafsson, Lotta; Bendsöe, Niels; Soto Thompson, Marcelo; AnderssonEngels, Stefan; Svanberg, Katarina Kinetics of the superficial perfusion and temperature in connection with photodynamic therapy of basal cell carcinomas using esterified and non-esterified 5-aminolaevulinic acid. British Journal of Dermatology, 148(6), 1179 -1188 . DOI: 10.1046 /j.1365 -2133 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.• You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal PhotobiologyKinetics of the superficial perfusion and temperature in connection with photodynamic therapy of basal cell carcinomas using esterified and non-esterified 5-aminolaevulinic acid SummaryBackground Photodynamic therapy (PDT) is a local treatment modality with increasing indications for various malignant and non malignant diseases. The treatment parameters have not yet been optimized as there is a need for a better understanding of the process. The skin is an important target and serves as a good model for monitoring and evaluating the interaction of light with biological tissue. Objectives The tissue perfusion and the temperature of basal cell carcinomas were measured in connection with PDT in order to investigate the biological mechanisms involved. Methods An infrared camera was used during the treatment to measure skin temperature and a laser Doppler perfusion imaging device was used to image the superficial perfusion before and after treatment. Six hours after topical application of 5-aminolaevulinic acid (ALA) or methyl esterified ALA (ALA-ME), 38 basal cell carcinomas were treated using light from a diode laser at 633 nm. Results In the lesions, the perfusion immediately after PDT was similar to that before PDT. One hour after the treatment the perfusion in the lesion was increased 50% compared with before PDT. However, in the skin surrounding the lesions the perfusion was doubled immediately after PDT and was still increasing 1 h after treatment. A temperature increase in the lesions of about 1-3°C was observed for light fluence rates of 100-150 mW cm
ABSTRACT:Various optical techniques were used to investigate relevant parameters involved in photodynamic therapy (PDT) of human basal cell carcinomas (BCCs). The aim of the study was to compare the diagnostic and therapeutic outcome when using topically applied methyl-esterified -aminolevulinic acid (ALA-ME) and -aminolevulinic acid (ALA). A total of 35 pathologically verified BCCs in 14 patients were investigated. A diode laser, emitting continuous light at 633 nm, was used to induce PDT. The diagnostic measurements were performed before, during, and after PDT. Laser-induced fluorescence (LIF) was used to monitor the build-up of the ALA/ALA-ME-induced protoporphyrin IX (PpIX). The superficial tissue perfusion was measured with laser-Doppler perfusion imaging (LDPI) and the temperature of the lesion and the surrounding tissue was imaged with an IR-camera. A clear demarcation between the lesion and the normal skin was detected with LIF before the treatment for both PpIX precursors. The fluorescence measurements suggest that PpIX builds up to a higher degree and more selectively in the tumour following ALA-ME as compared to ALA. The LDPI measurements indicate a local transient restriction in blood perfusion immediately post-PDT. The measurement with the IR-camera revealed a temperature rise of about 1-2°C during the treatment.
To overcome the limited treatment depth of superficial photodynamic therapy we investigate interstitial light delivery. In the present work the treatment light was delivered using a system in which three or six clear-cut fibers were placed in direct contact with the tumor area. This placement was thought to represent a step toward general purpose interstitial PDT. Twelve nodular basal cell carcinomas were treated employing delta-aminolevulinic acid and 635 nm laser irradiation. Fluorescence measurements were performed monitoring the buildup and subsequent bleaching of the produced sensitizer protoporphyrin IX. The treatment efficacy, judged at a 28-month follow-up, showed a 100% complete response. Two punch excisions at 7 months converted two partial responses to complete responses. One patient failed to appear at all follow-up sessions. The outcome of the treatments was comparable to superficial photodynamic therapy in terms of histological, clinical, and cosmetic results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.