Photoacoustic imaging has attracted interest for its capacity to capture functional spectral information with high spatial and temporal resolution in biological tissues. Several photoacoustic imaging systems have been commercialized recently, but they are variously limited by non-clinically relevant designs, immobility, single anatomical utility (e.g., breast only), or non-programmable interfaces. Here, we present a real-time clinical photoacoustic and ultrasound imaging system which consists of an FDA-approved clinical ultrasound system integrated with a portable laser. The system is completely programmable, has an intuitive user interface, and can be adapted for different applications by switching handheld imaging probes with various transducer types. The customizable photoacoustic and ultrasound imaging system is intended to meet the diverse needs of medical researchers performing both clinical and preclinical photoacoustic studies.
In response to high rates of obesity in the USA, several American cities, counties, and states have passed laws requiring restaurant chains to post labels identifying the energy content of items on menus, and nationwide implementation of menu labeling is expected in late 2016. In this review, we identify and summarize the results of 16 studies that have assessed the impact of real-world numeric calorie posting. We also discuss several controversies surrounding the US Food and Drug Administration's implementation of federally mandated menu labeling. Overall, the evidence regarding menu labeling is mixed, showing that labels may reduce the energy content of food purchased in some contexts, but have little effect in other contexts. However, more data on a range of ong-term consumption habits and restaurant responses is needed to fully understand the impact menu labeling laws will have on the US population's diet.
During early development, midbrain dopaminergic (mDA) neuronal progenitors (NPs) arise from the ventral mesencephalic area by the combined actions of secreted factors and their downstream transcription factors. These mDA NPs proliferate, migrate to their final destinations, and develop into mature mDA neurons in the substantia nigra and the ventral tegmental area. Here, we show that such authentic mDA NPs can be efficiently isolated from differentiated ES cells (ESCs) using a FACS method combining two markers, Otx2 and Corin. Purified Otx2 + Corin + cells coexpressed other mDA NP markers, including FoxA2, Lmx1b, and Glast. Using optimized culture conditions, these mDA NPs continuously proliferated up to 4 wk with almost 1,000-fold expansion without significant changes in their phenotype. Furthermore, upon differentiation, Otx2 + Corin + cells efficiently generated mDA neurons, as evidenced by coexpression of mDA neuronal markers (e.g., TH, Pitx3, Nurr1, and Lmx1b) and physiological functions (e.g., efficient DA secretion and uptake). Notably, these mDA NPs differentiated into a relatively homogenous DA population with few serotonergic neurons. When transplanted into PD model animals, aphakia mice, and 6-OHDA-lesioned rats, mDA NPs differentiated into mDA neurons in vivo and generated well-integrated DA grafts, resulting in significant improvement in motor dysfunctions without tumor formation. Furthermore, grafted Otx2 + Corin + cells exhibited significant migratory function in the host striatum, reaching >3.3 mm length in the entire striatum. We propose that functional and expandable mDA NPs can be efficiently isolated by this unique strategy and will serve as useful tools in regenerative medicine, bioassay, and drug screening.neural precursors | dopaminergic neurons | transplantation
Bi2Se3 nanoplates can be a promising PA contrast agent at 1064 nm that offers a high optical absorbance in the second NIR region providing a high contrast imaging and increased depth of penetration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.