We investigated the hypothesis that endothelial cells activated by erythropoietin (EPO) promote the migration of neuroblasts. This hypothesis is based on observations in vivo that treatment of focal cerebral ischemia with EPO enhances the migration of neuroblasts to the ischemic boundary, a site containing activated endothelial cells and angiogenic microvasculature. To model the microenvironment within the ischemic boundary zone, we used a coculture system of mouse brain endothelial cells (
Angiogenesis and neurogenesis are coupled processes. Using a coculture system, we tested the hypothesis that cerebral endothelial cells activated by ischemia enhance neural progenitor cell proliferation and differentiation, while neural progenitor cells isolated from the ischemic subventricular zone promote angiogenesis. Coculture of neural progenitor cells isolated from the subventricular zone of the adult normal rat with cerebral endothelial cells isolated from the stroke boundary substantially increased neural progenitor cell proliferation and neuronal differentiation and reduced astrocytic differentiation. Conditioned medium harvested from the stroke neural progenitor cells promoted capillary tube formation of normal cerebral endothelial cells. Blockage of vascular endothelial growth factor receptor 2 suppressed the effect of the endothelial cells activated by stroke on neurogenesis as well as the effect of the supernatant obtained from stroke neural progenitor cells on angiogenesis. These data suggest that angiogenesis couples to neurogenesis after stroke and vascular endothelial growth factor likely mediates this coupling.
The migratory behavior of neuroblasts after a stroke is poorly understood. Using time-lapse microscopy, we imaged migration of neuroblasts and cerebral vessels in living brain slices of adult doublecortin (DCX, a marker of neuroblasts) enhanced green fluorescent protein (eGFP) transgenic mice that were subjected to 7 days of stroke. Our results show that neuroblasts originating in the subventricular zone (SVZ) of adult mouse brain laterally migrated in chains or individually to reach the ischemic striatum. The chains were initially formed at the border between the SVZ and the striatum by neuroblasts in the SVZ and then extended to the striatum. The average speed of DCXeGFP-expressing cells within chains was 28.67±1.04 lm/h, which was significantly faster (P < 0.01) than the speed of the cells in the SVZ (17.98 ± 0.57 lm/h). Within the ischemic striatum, individual neuroblasts actively extended or retracted their processes, suggestive of probing the immediate microenvironment. The neuroblasts close to cerebral blood vessels exhibited multiple processes. Our data suggest that neuroblasts actively interact with the microenvironment to reach the ischemic striatum by multiple migratory routes.
Collectively, the present study suggests that stroke promotes cytokinesis of migrating neuroblasts, and these cells migrate toward the ischemic striatum with distinct migratory behaviors and retain the capacity for cell division during migration.
Neural progenitor cells in the subventricular zone (SVZ) of the lateral ventricular wall give rise to new neurons throughout rodent life. Ischemic stroke induces angiogenesis and neurogenesis. Using laser capture microdissection (LCM) in combination with microarrays containing approximately 400 known genes associated with stem cells and angiogenesis, we investigated gene profiles of SVZ cells in the adult mouse subjected to middle cerebral artery occlusion. Our data revealed that nonstroke SVZ cells expressed sets of genes that are important for neural progenitor cell proliferation, differentiation, and migration. In addition, stroke SVZ cells expressed many genes involved in neurogenesis during embryonic development but were not detected in nonstroke SVZ cells. Stroke upregulated genes were verified by real-time reverse transcriptase-polymerase chain reaction and immunostaining. These data indicate that adult SVZ cells recapture embryonic molecular signals after stroke and provide insight into the molecular mechanisms, which regulate the biological function of neural progenitor cells in the SVZ of adult rodent brain under physiological and stroke conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.