DNA fragmentation has been shown to be one of the causes of male infertility, particularly related to repeated abortions, and different methods have been developed to analyze it. In the present study, two commercial kits based on the SCD technique (Halosperm® and SDFA) were evaluated by the use of the DNA fragmentation module of the ISAS® v1 CASA system. Seven semen samples from volunteers were analyzed. To compare the results between techniques, the Kruskal–Wallis test was used. Data were used for calculation of Principal Components (two PCs were obtained), and subsequent subpopulations were identified using the Halo, Halo/Core Ratio, and PC data. Results from both kits were significantly different (P < 0.001). In each case, four subpopulations were obtained, independently of the classification method used. The distribution of subpopulations differed depending on the kit used. From the PC data, a discriminant analysis matrix was obtained and a good a posteriori classification was obtained (97.1% for Halosperm and 96.6% for SDFA). The present results are the first approach on morphometric evaluation of DNA fragmentation from the SCD technique. This approach could be used for the future definition of a classification matrix surpassing the current subjective evaluation of this important sperm factor.
The use of cooled semen is relatively common in goats. There are a number of advantages of cooled semen doses, including easier handling of artificial insemination (AI) doses, transport, more AI doses per ejaculate, and higher fertility rates in comparison with frozen AI doses. However, cooled semen has a short shelf life. The objective of this study was to examine the effect of temperature and sperm concentration on the in vitro sperm quality during liquid storage for 48 h, including sperm motility and kinetics, response to oxidation, mitochondrial membrane potential (MMP) and DNA fragmentation in goats. Three experiments were performed. In the first, the effects of liquid preservation of semen at different temperatures (5 °C or 17 °C), durations (0, 24 and 48 h) and sperm concentrations (250 × 106 sperm/mL (1:2 dilution rate), 166.7 × 106 sperm/mL (1:3 dilution rate) or 50 × 106 sperm/mL (1:10 dilution rate)) on sperm motility and kinetics were studied. In the second experiment, the effect of temperature, sperm washing and concentration on sperm motility and DNA fragmentation was studied. Finally, the effect of sperm concentration and duration of storage at 5 °C on sperm motility, response to oxidative stress and MMP was examined. We found that refrigerated liquid storage of goat sperm impaired sperm quality, such as motility, MMP and response to oxidation, as storage time increased; however, sperm DNA fragmentation index was not significantly affected. Liquid storage at 5 °C preserved higher total motility than at 17 °C. Moreover, we observed that the reduction of sperm concentration below 500 × 106 sperm/mL did not seem to improve the quality of spermatozoa conserved in milk-based extender in the conditions tested.
An increase in reactive oxygen species (ROS) or decrease in antioxidant barriers can provoke lipid peroxidation of the membranes or DNA damage of the spermatozoa. The aim of this work is to study the effect of the different degrees of oxidative stress generated by H O incubation on total motility, kinetics, and DNA fragmentation of zebrafish (Danio rerio) spermatozoa. For this process, experimental groups were incubated in 50 µM (Low; L) and 200 µM (High; H) H O , respectively, for 20 min at 4ºC. Sperm motility parameters were obtained with a computer-assisted sperm analysis (CASA) system. Sperm DNA fragmentation (SDF) was assessed using the sperm chromatin dispersion test. Both low and high H O concentration groups showed lower motility than control groups. Progressive motility of spermatozoa incubated in the H group dropped rapidly in comparison with other groups. Regarding SDF, the control and L groups had significantly lower values than the H group (25.0% and 31.6% vs. 48.1% fragmented sperm for C, L, and H groups, respectively; p < 0.05). Sperm motility, mostly progressive motility, decreased as H O concentration increased, mainly when time after sperm activation increased. SDF increased as the H O concentration increased. However, measurements of the halo area did not agree with the subjective SDF rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.