In this paper, we study a class of Caputo fractional q-difference inclusions in Banach spaces. We obtain some existence results by using the set-valued analysis, the measure of noncompactness, and the fixed point theory (Darbo and Mönch’s fixed point theorems). Finally we give an illustrative example in the last section. We initiate the study of fractional q-difference inclusions on infinite dimensional Banach spaces.
In this paper, we have extended the model of HIV-1 infection to the fractional mathematical model using Caputo-Fabrizio and Atangana-Baleanu fractional derivative operators. A detailed proof for the existence and the uniqueness of the solution of fractional mathematical model of HIV-1 infection in Atangana-Baleanu sense is presented. Numerical approach is used to find and study the behavior of the solution of the stated model using different derivative operators, and the graphical comparison between the solutions obtained for the Caputo-Fabrizio and the Atangana-Baleanu operator is presented to see which fractional derivative operator is more efficient.
We apply a new generalized Caputo operator to investigate the dynamical behaviour of the non-integer food web model (FWM). This dynamical model has three population species and is nonlinear. Three types of species are considered in this population: prey species, intermediate predators, and top predators, and the top predators are also divided into mature and immature predators. We calculated the uniqueness and existence of the solutions applying the fixed-point hypothesis. Our study examines the possibility of obtaining new dynamical phase portraits with the new generalized Caputo operator and demonstrates the portraits for several values of fractional order. A generalized predictor–corrector (P-C) approach is utilized in numerically solving this food web model. In the case of the nonlinear equations system, the effectiveness of the used scheme is highly evident and easy to implement. In addition, stability analysis was conducted for this numerical scheme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.