A new sensing protocol based on NMR magnetization transfer sequences and the molecular recognition abilities of nanoparticles allows the detection and identification of organic molecules in complex mixtures.
Monolayer-protected nanoparticles provide a straightforward access to self-organized receptors that selectively bind different substrates in water. Molecules featuring different kinds of noncovalent interactions (namely, hydrophobic, ion pairing, and metal-ligand coordination) can be grafted on the nanoparticle surface to provide tailored binding sites for virtually any class of substrate. Not only the selectivity but also the strength of these interactions can be modulated. Such recognition ability can be exploited with new sensing protocols, based on NMR magnetization transfer and diffusion-ordered spectroscopy (DOSY), to detect and identify organic molecules in complex mixtures.
Anastomotic intimal hyperplasia (IH) is a major cause of both autologous vein and synthetic vascular graft failure. We have previously published data suggesting that cyclosporin may reduce the development of IH in a canine model. However, systemic administration of cyclosporin could create serious adverse effects. Therefore, it is our long-term goal to test the hypothesis that the controlled local release of cyclosporin from a polymeric vascular wrap will prevent the development of IH. To test this hypothesis, we developed a controlled release vascular wrap (sheet/ring) using a poly(ethylene glycol) (PEG) hydrogel. Sterilization of the polymers was performed using the ethylene oxide and hydrogen peroxide sterilization methods. It was found that except for one combination (8000 molecular weight and 1:1 crosslinking ratio), the differences in the swelling ratios for the sterilized and unsterilized hydrogels were not statistically significant. Release studies from unsterilized and ethylene oxide-sterilized PEG hydrogels were conducted. It was found that release lasted for approximately 50 h for sterilized as well as unsterilized PEG hydrogels. Acute animal studies, to test the deployment of both the polymeric sheets and rings to the adventitial surface of native arteries and veins, were completed successfully.
A simple and effective method for high-sensitivity NMR detection of selected compounds is reported. The method combines 1D NMR diffusion filter experiments and small monolayer-protected nanoparticles as high-affinity receptors. Once bound to the nanoparticles, the diffusion coefficient of the analyte decreases in such way that spectral editing based on diffusion filters can separate its signals from those of other mixture components. Using nanoparticles functionalized with Zn -triazacyclonane complexes, detection and identification of phosphorylated organic molecules can be achieved. Diphenyl phosphate can be detected at 25 micromolar concentration with good selectivity. The selectivity toward organic carboxylates is enhanced at pD=3.75. In these conditions, commercial tablets containing betamethasone phosphate and a large excess of benzoate could be successfully analyzed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.