Statistical analysis techniques such as principal component analysis (PCA) and discriminant analysis (DA) have become an integral part of data analysis for differential sensing. These multivariate statistical tools, while extremely versatile and useful, are sometimes used as "black boxes". Our aim in this paper is to improve the general understanding of how PCA and DA process and display differential sensing data, which should lead to the ability to better interpret the final results. With various sets of model data, we explore several topics, such as how to choose an appropriate number of hosts for an array, selectivity compared to cross-reactivity, when to add hosts, how to obtain the best visually representative plot of a data set, and when arrays are not necessary. We also include items at the end of the paper as general recommendations which readers can follow when using PCA or DA in a practical application. Through this paper we hope to present these statistical analysis methods in a manner such that chemists gain further insight into approaches that optimize the discriminatory power of their arrays.
Sense and sensibility: Synthetic oligonucleotide receptors have been generated that are capable of discriminating proteins with as little as four amino acids substitutions. This leads to the possibility that a panel of cross‐reactive aptamers can be an effective tool for discriminating proteins that are structurally similar without the need to generate a unique receptor for each variant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.