Phospholipids are suggested to drive tumorigenesis through their essential role in inflammation. Phospholipase A2 (PLA2) is a phospholipid metabolizing enzyme that releases free fatty acids, mostly arachidonic acid, and lysophospholipids, which contribute to the development of the tumor microenvironment (TME), promoting immune evasion, angiogenesis, tumor growth, and invasiveness. The mechanisms mediated by PLA2 are not fully understood, especially because an important inhibitory molecule, Annexin A1, is present in the TME but does not exert its action. Here, we will discuss how Annexin A1 in cancer does not inhibit PLA2 leading to both pro-inflammatory and pro-tumoral signaling pathways. Moreover, Annexin A1 promotes the release of cancer-derived exosomes, which also lead to the enrichment of PLA2 and COX-1 and COX-2 enzymes, contributing to TME formation. In this review, we aim to describe the role of PLA2 in the establishment of TME, focusing on cancer-derived exosomes, and modulatory activities of Annexin A1. Unraveling how these proteins interact in the cancer context can reveal new strategies for the treatment of different tumors. We will also describe the possible strategies to inhibit PLA2 and the approaches that could be used in order to resume the anti-PLA2 function of Annexin A1.
Breast Cancer (BC) encompasses numerous entities with different biological and behavioral characteristics, favored by tumor molecular complexity. Azadirachta indica (neem) presents phenolic compounds, indicating its potential as an antineoplastic compound. The present study aimed to evaluate the cellular response of MCF10, MCF7, and MDA-MB-231 breast cell lines to ethanolic extracts of neem leaves (EENL) obtained by dichloromethane (DCM) and ethyl acetate (EA) solvent. Extracts’ antiproliferative activities were evaluated against MCF 10A, MCF7, and MDA-MB-231 for 24 and 48 h using MTT assay. ESR1, ESR2, AR, AR-V1, AR-V4, and AR-V7 transcripts were quantified through qPCR for 0.03125 μg/mL of DCM and 1.0 μg/mL for EA for 48 h. The EENL was tested on Drosophila melanogaster as a sole treatment and then also together with doxorubicin. Antiproliferative effect on tumor cell lines without affecting MCF 10A were 1.0 µg/mL (P < 0.001) for EA, and 0.03125 µg/mL (P < 0.0001) for DCM, both after 48 h. Transcriptional levels of AR-V7 increased after treatment. In vivo assays demonstrated that EENL induced fewer tumors at a higher concentration with doxorubicin (DXR). The behavior of AR-V7 in the MDA-MB-231 tumor lineage indicates new pathways involved in tumor biology and this may have therapeutic value for cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.