The aureolic acid antibiotic mithramycin (MTM) binds selectively to GC-rich DNA sequences and blocks preferentially binding of proteins, like Sp1 transcription factors, to GC-rich elements in gene promoters. Genetic approaches can be applied to alter the MTM biosynthetic pathway in the producing microorganism and obtain new products with improved pharmacological properties. Here, we report on a new analog, MTM SDK, obtained by targeted gene inactivation of the ketoreductase MtmW catalyzing the last step in MTM biosynthesis. SDK exhibited greater activity as transcriptional inhibitor compared to MTM. SDK was a potent inhibitor of Sp1-dependent reporter activity and interfered minimally with reporters of other transcription factors, indicating that it retained a high degree of selectivity toward GC-rich DNA-binding transcription factors. RT–PCR and microarray analysis showed that SDK repressed transcription of multiple genes implicated in critical aspects of cancer development and progression, including cell cycle, apoptosis, migration, invasion and angiogenesis, consistent with the pleiotropic role of Sp1 family transcription factors. SDK inhibited proliferation and was a potent inducer of apoptosis in ovarian cancer cells while it had minimal effects on viability of normal cells. The new MTM derivative SDK could be an effective agent for treatment of cancer and other diseases with abnormal expression or activity of GC-rich DNA-binding transcription factors.
Phosphoinositide 3-kinase (PI 3-K) is implicated in a wide array of biological and pathophysiological responses, including tumorigenesis, invasion and metastasis, therefore specific inhibitors of the kinase may prove useful in cancer therapy. We propose that specific inositol polyphosphates have the potential to antagonize the activation of PI 3-K pathways by competing with the binding of PtdIns(3,4,5)P 3 to pleckstrin homology (PH) domains. Here we show that Ins(1,3,4,5,6)P 5 inhibits the serine phosphorylation and the kinase activity of Akt/PKB. As a consequence of this inhibition, Ins(1,3,4,5,6)P 5 induces apoptosis in ovarian, lung and breast cancer cells. Overexpression of constitutively active Akt protects SKBR-3 cells from Ins(1,3,4,5,6)P 5 -induced apoptosis. Furthermore, Ins(1,3,4,5,6)P 5 enhances the proapoptotic effect of cisplatin and etoposide in ovarian and lung cancer cells, respectively. These results support a role for Ins(1,3,4,5,6)P 5 as a specific inhibitor of the PI 3-K/Akt signalling pathway, that may sensitize cancer cells to the action of commonly used anticancer drugs.
New efforts in cancer therapy are being focused at various levels of signaling pathways. With phosphoinositide 3-kinase (PI3-K) potentially being necessary for a range of cancer-related functions, we have investigated the influence of selected inositol tris- to hexakisphosphates on cell growth and tumorigenicity. We show that micromolar concentrations of inositol 1,3,4,5,6-pentakisphosphate and inositol 1,4,5,6-tetrakisphosphate [Ins(1,4,5,6)P(4)] inhibit IGF-1-induced [(3)H]-thymidine incorporation in human breast cancer (MCF-7) cells and the ability to grow in liquid medium and form colonies in agarose semisolid medium by small cell lung cancer (SCLC) cells, a human cancer cell line containing a constitutively active PI3-K. In an ovarian cancer cell line that also contains a constitutively active PI3-K (SKOV-3 cells), Ins(1,4,5,6)P(4) again inhibited liquid medium growth. Furthermore, when applied extracellularly, inositol 1,3,4,5-tetrakisphosphate was shown indeed to enter SCLC cells. These effects appeared specifically related to PH domains known to bind to phosphatidylinositol 3,4-bisphosphate [PtdIns(3,4)P(2)] and phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P(3)], indicating involvement of the PI3-K downstream target protein kinase B (PKB/Akt). This was further supported by inhibition of PKB/Akt PH domain membrane targeting in COS-7 cells by Ins(1,4,5,6)P(4). Thus, we propose that specific inositol polyphosphates inhibit PI3-K by competing with PtdIns(3,4, 5)P(3)-binding PH domains and that this occurs mainly at the level of the downstream PI3-K target, PKB/Akt.
Aplidine, dehydrodidemnin B, is a marine depsipeptide isolated from the Mediterranean tunicate Aplidium albicans currently in phase II clinical trial. In human Molt-4 leukaemia cells Aplidine was found to be cytotoxic at nanomolar concentrations and to induce both a G 1 arrest and a G 2 blockade. The drug-induced cell cycle perturbations and subsequent cell death do not appear to be related to macromolecular synthesis (protein, RNA, DNA) since the effects occur at concentrations (e.g. 10 nM) in which macromolecule synthesis was not markedly affected. Ten nM Aplidine for 1 h inhibited ornithine decarboxylase activity, with a subsequently strong decrease in putrescine levels. This finding has questionable relevance since addition of putrescine did not significantly reduce the cell cycle perturbations or the cytotoxicity of Aplidine. The cell cycle perturbations caused by Aplidine were also not due to an effect on the cyclin-dependent kinases. Although the mechanism of action of Aplidine is still unclear, the cell cycle phase perturbations and the rapid induction of apoptosis in Molt-4 cells appear to be due to a mechanism different from that of known anticancer drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.