Background
Omaveloxolone is a synthetic oleanane triterpenoid that pharmacologically activates Nrf2, a master transcription factor that regulates genes with antioxidative, anti-inflammatory, and mitochondrial bioenergetic properties, and is being evaluated in patients with Friedreich’s ataxia.
Methods
The present study evaluated the pharmacokinetics (PK) and tissue distribution of omaveloxolone in monkeys after single and multiple oral doses, and then compared these data to initial results in Friedreich’s ataxia patients. Pharmacodynamic (PD) evaluations in monkeys consisted of Nrf2 target gene mRNA expression in peripheral blood mononuclear cells (PBMCs), liver, lung, and brain. A PK/PD model was generated with the monkey data, and used to further evaluate the Friedreich’s ataxia patient PK profile.
Results
Oral administration of omaveloxolone to monkeys was associated with dose-linear plasma PK and readily measureable and dose-proportional concentrations in liver, lung, and brain. Dose-dependent induction of Nrf2 target genes in PBMCs and tissues was also observed. Clinically, oral administration of omaveloxolone to Friedreich’s ataxia patients at incremental doses from 2.5 to 300 mg produced dose-proportional systemic exposures. Clinical doses of at least 80 mg were associated with meaningful improvements in neurological function in patients and generated plasma omaveloxolone concentrations consistent with those significantly inducing Nrf2 target genes in monkeys, as shown with the monkey PK/PD model.
Conclusion
Overall, the monkey data demonstrate a well-characterized and dose-proportional PK and tissue distribution profile after oral administration of omaveloxolone, which was associated with Nrf2 activation. Further, systemic exposures to omaveloxolone that produce Nrf2 activation in monkeys were readily achievable in Friedreich’s ataxia patients after oral administration.
ABSTRACT:The ATP-binding cassette (ABC) drug transporters in the placenta are involved in controlling the exchange of endogenous and exogenous moieties. Pregnane X receptor (PXR) is a nuclear receptor that regulates the hepatic expression of several key ABC transporters, but it is unclear whether PXR is involved in the regulation of these transporters in the placenta. This study explores the role of PXR in the regulation of placental drug transporters. The placental mRNA expression of Mdr1a, Bcrp, and Mrp1, 2, and 3 was
Lopinavir (LPV), an antiretroviral protease inhibitor frequently prescribed in HIV-positive pregnancies, is a substrate of Abcb1 and Abcc2. As differences in placental expression of these transporters were seen in Pregnane X Receptor (PXR) −/− mice, we examined the impact of placental transporter expression and fetal PXR genotype on the fetal accumulation of LPV. PXR +/− dams bearing PXR +/+, PXR +/−, and PXR −/− fetuses were generated by mating PXR +/− female mice with PXR +/− males. On gestational day 17, dams were administered 10 mg/kg LPV (i.v.) and sacrificed 30 min post injection. Concentrations of LPV in maternal plasma and fetal tissue were measured by LC-MS/MS, and transporter expression was determined by quantitative RT-PCR. As compared to the PXR +/+ fetal units, placental expression of Abcb1a, Abcc2, and Abcg2 mRNA were two- to three-fold higher in PXR −/− fetuses (p < 0.05). Two-fold higher fetal:maternal LPV concentration ratios were also seen in the PXR +/+ as compared to the PXR −/− fetuses (p < 0.05), and this significantly correlated to the placental expression of Abcb1a (r = 0.495; p < 0.005). Individual differences in the expression of placental transporters due to genetic or environmental factors can impact fetal exposure to their substrates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.