Obesity is associated with an enhanced inflammatory response that exacerbates insulin resistance and contributes to diabetes, atherosclerosis, and cardiovascular disease. One mechanism accounting for the increased inflammation associated with obesity is activation of the innate immune signaling pathway triggered by TLR4 recognition of saturated fatty acids, an event that is essential for lipid-induced insulin resistance. Using in vitro and in vivo systems to model lipid induction of TLR4-dependent inflammatory events in rodents, we show here that TLR4 is an upstream signaling component required for saturated fatty acid-induced ceramide biosynthesis. This increase in ceramide production was associated with the upregulation of genes driving ceramide biosynthesis, an event dependent of the activity of the proinflammatory kinase IKKβ. Importantly, increased ceramide production was not required for TLR4-dependent induction of inflammatory cytokines, but it was essential for TLR4-dependent insulin resistance. These findings suggest that sphingolipids such as ceramide might be key components of the signaling networks that link lipid-induced inflammatory pathways to the antagonism of insulin action that contributes to diabetes.
Adipocytes package incoming fatty acids into triglycerides and other glycerolipids, with only a fraction spilling into a parallel biosynthetic pathway that produces sphingolipids. Herein, we demonstrate that subcutaneous adipose tissue of type 2 diabetics contains considerably more sphingolipids than non-diabetic, BMI-matched counterparts. Whole-body and adipose tissue-specific inhibition/deletion of serine palmitoyltransferase (Sptlc), the first enzyme in the sphingolipid biosynthesis cascade, in mice markedly altered adipose morphology and metabolism, particularly in subcutaneous adipose tissue. The reduction in adipose sphingolipids increased brown and beige/brite adipocyte numbers, mitochondrial activity, and insulin sensitivity. The manipulation also increased numbers of anti-inflammatory M2 macrophages in the adipose bed and induced secretion of insulin-sensitizing adipokines. By comparison, deletion of serine palmitoyltransferase from macrophages had no discernible effects on metabolic homeostasis or adipose function. These data indicate that newly synthesized adipocyte sphingolipids are nutrient signals that drive changes in the adipose phenotype to influence whole-body energy expenditure and nutrient metabolism.
The circadian system regulates daily rhythms in lipid metabolism and adipose tissue function. Although disruption of circadian clock function is associated with negative cardiometabolic end points, very little is known about interindividual variation in circadianregulated metabolic pathways. Here, we used targeted lipidomicsbased approaches to profile the time course of 263 lipids in blood plasma in 20 healthy individuals. Over a span of 28 h, blood was collected every 4 h and plasma lipids were analyzed by HPLC/MS. Across subjects, about 13% of lipid metabolites showed circadian variation. Rhythmicity spanned all metabolite classes examined, suggesting widespread circadian control of lipid-mediated energy storage, transport, and signaling. Intersubject agreement for lipids identified as rhythmic was only about 20%, however, and the timing of lipid rhythms ranged up to 12 h apart between individuals. Healthy subjects therefore showed substantial variation in the timing and strength of rhythms across different lipid species. Strong interindividual differences were also observed for rhythms of blood glucose and insulin, but not cortisol. Using consensus clustering with iterative feature selection, subjects clustered into different groups based on strength of rhythmicity for a subset of triglycerides and phosphatidylcholines, suggesting that there are different circadian metabolic phenotypes in the general population. These results have potential implications for lipid metabolism disorders linked to circadian clock disruption.metabolomics | chronobiology T he circadian clock in the suprachiasmatic nucleus (SCN) of the hypothalamus regulates daily rhythms in behavior and physiology, ensuring that metabolic pathways are temporally coordinated with 24-h cycles of rest-activity and feeding (1). The circadian system controls lipid and carbohydrate homeostasis, thus optimizing energy storage and utilization across the day (2). In humans, this is reflected in part by diurnal variation in glucose tolerance (3, 4), as well as circadian rhythms of glucose, insulin, triglycerides, and adipose-derived hormones in blood (5, 6). At the cellular level, circadian rhythms are generated by transcriptional and posttranscriptional feedback loops, with daily rhythms of cell biology driven by core clock genes and their protein products. The SCN neural rhythm is normally entrained by the 24-h solar cycle, whereas the phase of rhythms in peripheral tissues is thought to be determined primarily by daily rest-activity and/or feeding cycles (7).Disruption of circadian rhythms has been implicated in metabolic syndrome and dyslipidemia (2), and chronic circadian misalignment is thought to contribute to increased risk of cardiovascular disease and obesity in shift workers (8, 9). Although the mechanisms have yet to be fully elucidated, consumption of meals at night is associated with higher postprandial triglyceride levels, compared with meals consumed during the daytime (10, 11). In nocturnal mice, the circadian timing of food intake contribut...
We are interested in the early mechanisms that initiate regional patterning in the dorsal telencephalon, which gives rise to cerebral cortex. Members of the LIM-homeodomain (LIM-HD) family of transcription factors are implicated in patterning and cell fate specification in several systems including the mammalian forebrain. Mice in which Lhx2 is disrupted were reported to have reduced telencephalic development, and the hippocampal primordium appeared to be missing, by morphological observation. We hypothesized that this may be due to a defect in the cortical hem, a Wnt- and Bmp-rich putative signaling center in the medial telencephalon, a source of regulatory signals for hippocampal development. We asked if the expression of any known hem-specific signaling molecule is deficient in Lhx2-/- mice. Our results reveal, unexpectedly, that at embryonic day (E)12.5, what appears to be some spared 'lateral' cortex is instead an expanded cortical hem. Normally restricted to the extreme medial edge of the telencephalon, the hem covers almost the entire dorsal telencephalon in the Lhx2-/- mice. This indicates a role for Lhx2 in the regulation of the extent of the cortical hem. In spite of an expanded, mislocated hem in the Lhx2-/- telencephalon, a potential source of ectopic dorsalizing cues, no hippocampal differentiation is detected in tissue adjacent to the mutant hem, nor does the overall dorsoventral patterning appear perturbed. We propose that Lhx2 is involved at a crucial early step in patterning the telencephalon, where the neuroepithelium is first divided into presumptive cortical tissue, and the cortical hem. The defect in the Lhx2-/- telencephalon appears to be at this step.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.