A constitutive model is developed and implemented in the finite element system three-dimensional computer-aided pavement analysis for the simulation of hot mix asphalt field compaction. The details of this model are presented in a companion paper (Masad et al., Finite element modelling of field compaction of hot mix asphalt. Part I: Theory, International Journal of Pavement Engineering, Accepted, 2014). This model is based on nonlinear viscoelasticity theory and can accommodate large deformations that occur during the compaction process. The model was used to study the influence of frequency and amplitude of vibratory compaction rollers on the level of compaction. In addition, it was used to analyse the influence of various methods for compacting longitudinal joints on the percent air voids near these joints. The model was used to simulate the compaction of asphalt pavements with different structures and compacted using various equipment and patterns. The finite element results of the level of compaction and percent air voids were in reasonable agreement with the measurements. The model offers the opportunity to simulate and predict the compaction of asphalt mixtures under various rolling patterns and for different pavement structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.