The tooth works as a functional unit with its surrounding bony socket, the alveolar bone. The growth of the tooth and alveolar bone is co-ordinated so that a studied distance always separates the 2, known as the tooth-bone interface (TBI). Lack of mineralization, a crucial feature of the TBI, creates the space for the developing tooth to grow and the soft tissues of the periodontium to develop. We have investigated the interactions between the tooth and its surrounding bone during development, focusing on the impact of the developing alveolar bone on the development of the mouse first molar (M1). During development, TRAP-positive osteoclasts are found to line the TBI as bone starts to be deposited around the tooth, removing the bone as the tooth expands. An enhancement of osteoclastogenesis through RANK-RANKL signaling results in an expansion of the TBI, showing that osteoclasts are essential for defining the size of this region. Isolation of the M1 from the surrounding mesenchyme and alveolar bone leads to an expansion of the tooth germ, driven by increased proliferation, indicating that, during normal development, the growth of the tooth germ is constrained by the surrounding tissues.
Explant culture allows manipulation of developing organs at specific time points and is therefore an important method for the developmental biologist. For many organs it is difficult to access developing tissue to allow monitoring during ex vivo culture. The slice culture method allows access to tissue so that morphogenetic movements can be followed and specific cell populations can be targeted for manipulation or lineage tracing. In this paper we describe a method of slice culture that has been very successful for culture of tooth germs in a range of species. The method provides excellent access to the tooth germs, which develop at a similar rate to that observed in vivo, surrounded by the other jaw tissues. This allows tissue interactions between the tooth and surrounding tissue to be monitored. Although this paper concentrates on tooth germs, the same protocol can be applied to follow development of a number of other organs, such as salivary glands, Meckel's cartilage, nasal glands, tongue, and ear.
Objectives:This study aims at analyzing the changes in gingival crevicular fluid (GCF) lactate dehydrogenase (LDH) activity during orthodontic movement.Methods:Twenty patients all requiring first premolar extractions were selected and treated with conventional straight wire mechanotherapy. Canine retraction was done using 125 g Nitinol closed coil springs. The maxillary canine on one side served as the experimental site while the contralateral canine served as the control. GCF was collected from the canines before initiation of retraction, then 1 hour after initiating canine retraction, followed by 1 day, 7 days, 14 days and 21 days. GCF LDH levels were estimated and compared with the control site.ResultsThe results revealed significantly higher LDH levels on the 7th, 14th and 21st day at the sites where orthodontic force had been applied. The levels also showed a significant increase from 0 hour to the 21st day. Peak levels were seen on 14th and 21st day following initiation of retraction.Conclusions:The study showed that LDH could be successfully estimated in the GCF and its increased levels could indicate active tooth movement, which could aid the clinician in monitoring active orthodontic tooth movement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.