Background: Gene regulatory networks control tissue homeostasis and disease progression in a cell-type specific manner. Ubiquitously expressed chromatin regulators modulate these networks, yet the mechanisms governing how tissue-specificity of their function is achieved are poorly understood. BRD4, a member of the BET (Bromo- and Extra-Terminal domain) family of ubiquitously expressed acetyl-lysine reader proteins, plays a pivotal role as a coactivator of enhancer signaling across diverse tissue types in both health and disease, and has been implicated as a pharmacologic target in heart failure. However, the cell-specific role of BRD4 in adult cardiomyocytes remains unknown. Methods: We combined conditional mouse genetics, unbiased transcriptomic and epigenomic analyses, and classical molecular biology and biochemical approaches to understand the role of BRD4 in adult cardiomyocyte homeostasis. Results: Here, we show that cardiomyocyte-specific deletion of Brd4 in adult mice leads to acute deterioration of cardiac contractile function with mutant animals demonstrating a transcriptomic signature enriched for decreased expression of genes critical for mitochondrial energy production. Genome-wide occupancy data show that BRD4 enriches at many downregulated genes (including the master co-activators Ppargc1a , Ppargc1b , and their downstream targets) and preferentially co-localizes with GATA4, a lineage determining cardiac transcription factor not previously implicated in regulation of adult cardiac metabolism. BRD4 and GATA4 form an endogenous complex in cardiomyocytes and interact in a bromodomainindependent manner, revealing a new functional interaction partner for BRD4 that can direct its locus and tissue specificity. Conclusions: These results highlight a novel role for a BRD4-GATA4 module in cooperative regulation of a cardiomyocyte specific gene program governing bioenergetic homeostasis in the adult heart.
Circulating corticosteroids orchestrate stress adaptation, including inhibition of inflammation. While pathways governing corticosteroid biosynthesis and intracellular signaling are well understood, less is known about mechanisms controlling plasma corticosteroid transport. Here, we show that hepatocyte KLF15 (Kruppel-like factor 15) controls plasma corticosteroid transport and inflammatory responses through direct transcriptional activation of Serpina6 , which encodes corticosteroid-binding globulin (CBG). Klf15 -deficient mice have profoundly low CBG, reduced plasma corticosteroid binding capacity, and heightened mortality during inflammatory stress. These defects are completely rescued by reconstituting CBG, supporting that KLF15 works primarily through CBG to control plasma corticosterone homeostasis. To understand transcriptional mechanisms, we generated the first KLF15 cistromes using newly engineered Klf15 3xFLAG mice. Unexpectedly, liver KLF15 is predominantly promoter enriched, including Serpina6 , where it binds a palindromic GC-rich motif, opens chromatin, and transactivates genes with minimal associated direct gene repression. Overall, we provide critical mechanistic insight into KLF15 function and identify a hepatocyte-intrinsic transcriptional module that potently regulates systemic corticosteroid transport and inflammation.
Gene regulatory networks control tissue plasticity during basal homeostasis and disease in a cell-type specific manner. Ubiquitously expressed chromatin regulators modulate these networks, yet the mechanisms governing how tissue-specificity of their function is achieved are poorly understood. BRD4, a member of the BET (Bromo-and Extra-Terminal domain) family of ubiquitously expressed acetyl-lysine reader proteins, plays a pivotal role as a coactivator of enhancer signaling across diverse tissue types in both health and disease, and has been implicated as a pharmacologic target in heart failure.However, the cell-specific role of BRD4 in adult cardiomyocytes remains unknown. Here, we show that cardiomyocyte-specific deletion of BRD4 in adult mice leads to acute deterioration of cardiac contractile function with mutant animals demonstrating a transcriptomic signature enriched for decreased expression of genes critical for mitochondrial energy production. Genome-wide occupancy data show that BRD4 enriches at many downregulated genes and preferentially co-localizes with GATA4, a lineage determining cardiac transcription factor not previously implicated in regulation of adult cardiac metabolism. Co-immunoprecipitation assays demonstrate that BRD4 and GATA4 form a complex in a bromodomain-independent manner, revealing a new interaction partner for BRD4 that has functional consequences for target transactivation and may allow for locus and tissue specificity. These results highlight a novel role for a BRD4-GATA4 module in cooperative regulation of a cardiomyocyte specific gene program governing bioenergetic homeostasis in the adult heart.
Transcriptional networks governing cardiac precursor cell (CPC) specification are incompletely understood due in part to limitations in distinguishing CPCs from non-cardiac mesoderm in early gastrulation. We leveraged detection of early cardiac lineage transgenes within a granular single cell transcriptomic time course of mouse embryos to identify emerging CPCs and describe their transcriptional profiles. Mesp1, a transiently-expressed mesodermal transcription factor (TF), is canonically described as an early regulator of cardiac specification. However, we observed perdurance of CPC transgene-expressing cells in Mesp1 mutants, albeit mis-localized, prompting us to investigate the scope of Mesp1’s role in CPC emergence and differentiation. Mesp1 mutant CPCs failed to robustly activate markers of cardiomyocyte maturity and critical cardiac TFs, yet they exhibited transcriptional profiles resembling cardiac mesoderm progressing towards cardiomyocyte fates. Single cell chromatin accessibility analysis defined a Mesp1-dependent developmental breakpoint in cardiac lineage progression at a shift from mesendoderm transcriptional networks to those necessary for cardiac patterning and morphogenesis. These results reveal Mesp1-independent aspects of early CPC specification and underscore a Mesp1-dependent regulatory landscape required for progression through cardiogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.