Developing effective strategies to prevent or treat COVID-19 requires understanding the natural immune response to SARS-CoV-2. We used an unbiased, genome-wide screening technology to determine the precise peptide sequences in SARS-CoV-2 that are recognized by the memory CD8
+
T cells of COVID-19 patients. In total, we identified 3–8 epitopes for each of the six most prevalent human leukocyte antigen (HLA) types. These epitopes were broadly shared across patients and located in regions of the virus that are not subject to mutational variation. Notably, only 3 of the 29 shared epitopes were located in the spike protein, whereas most epitopes were located in ORF1ab or the nucleocapsid protein. We also found that CD8
+
T cells generally do not cross-react with epitopes in the four seasonal coronaviruses that cause the common cold. Overall, these findings can inform development of next-generation vaccines that better recapitulate natural CD8
+
T cell immunity to SARS-CoV-2.
MRL/MpJ-Faslpr/lpr/J (MRLlpr) mice develop lupus-like disease manifestations in an IL-21–dependent manner. IL-21 is a pleio-tropic cytokine that can influence the activation, differentiation, and expansion of B and T cell effector subsets. Notably, auto-reactive CD4+ T and B cells spontaneously accumulate in MRLlpr mice and mediate disease pathogenesis. We sought to identify the particular lymphocyte effector subsets regulated by IL-21 in the context of systemic autoimmunity and, thus, generated MRLlpr mice deficient in IL-21R (MRLlpr.IL-21R−/−). Lymphadenopathy and splenomegaly, which are characteristic traits of the MRLlpr model were significantly reduced in the absence of IL-21R, suggesting that immune activation was likewise decreased. Indeed, spontaneous germinal center formation and plasma cell accumulation were absent in IL-21R–deficient MRLlpr mice. Correspondingly, we observed a significant reduction in autoantibody titers. Activated CD4+ CD44+ CD62Llo T cells also failed to accumulate, and CD4+ Th cell differentiation was impaired, as evidenced by a significant reduction in CD4+ T cells that produced the pronephritogenic cytokine IFN-γ. T extrafollicular helper cells are a recently described subset of activated CD4+ T cells that function as the primary inducers of autoantibody production in MRLlpr mice. Importantly, we demonstrated that T extrafollicular helper cells are dependent on IL-21R for their generation. Together, our data highlighted the novel observation that IL-21 is a critical regulator of multiple pathogenic B and T cell effector subsets in MRLlpr mice.
B cells are required for follicular helper T (Tfh) cell development, as is the ligand for ICOS (ICOS-L); however, the separable contributions of Ag and ICOS-L delivery by cognate B cells to Tfh-cell development and function are unknown. We find that Tfh-cell and germinal center differentiation are dependent upon cognate B-cell display of ICOS-L, but only when Ag presentation by the latter is limiting, with the requirement for B-cell expression of ICOS-L overcome by robust Ag delivery. These findings demonstrate that Ag-specific B cells provide different, yet compensatory signals for Tfh-cell differentiation, while reconciling conflicting data indicating a requirement for ICOS-L expression on cognate B cells for Tfh-cell development with those demonstrating this requirement could be bypassed in lieu of that tendered by non-cognate B cells. Our findings clarify the separable roles of delivery of Ag and ICOS-L by cognate B cells for Tfh-cell maturation and function, and have implications for using therapeutic ICOS blockade in settings of abundantly available Ag, such as in systemic autoimmunity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.