Hsp70 molecular chaperones function in protein folding in a manner dependent on regulation by co-chaperones. Hsp40s increase the low intrinsic ATPase activity of Hsp70, and nucleotide exchange factors (NEFs) remove ADP after ATP hydrolysis, enabling a new Hsp70 interaction cycle with non-native protein substrate. Here, we show that members of the Hsp70-related Hsp110 family cooperate with Hsp70 in protein folding in the eukaryotic cytosol. Mammalian Hsp110 and the yeast homologues Sse1p/2p catalyze efficient nucleotide exchange on Hsp70 and its orthologue in Saccharomyces cerevisiae, Ssa1p, respectively. Moreover, Sse1p has the same effect on Ssb1p, a ribosome-associated isoform of Hsp70 in yeast. Mutational analysis revealed that the N-terminal ATPase domain and the ultimate C-terminus of Sse1p are required for nucleotide exchange activity. The Hsp110 homologues significantly increase the rate and yield of Hsp70-mediated re-folding of thermally denatured firefly luciferase in vitro. Similarly, deletion of SSE1 causes a firefly luciferase folding defect in yeast cells under heat stress in vivo. Our data indicate that Hsp110 proteins are important components of the eukaryotic Hsp70 machinery of protein folding.
Spinocerebellar ataxia type 3 (SCA3), like other polyglutamine (polyQ) diseases, is characterized by the formation of intraneuronal inclusions, but the mechanism underlying their formation is poorly understood. Here, we tested the "toxic fragment hypothesis", which predicts that proteolytic production of polyQ-containing fragments from the full-length disease protein initiates the aggregation process associated with inclusion formation and cellular dysfunction. We demonstrate that the removal of the N-terminus of polyQ-expanded ataxin-3 (AT3) is required for aggregation in vitro and in vivo. Consistently, proteolytic cleavage of full-length, pathogenic AT3 initiates the formation of sodium dodecylsulfate-resistant aggregates in neuroblastoma cells. Although full-length AT3 does not readily aggregate on its own, it is susceptible to co-aggregation with polyQ-expanded AT3 fragments. Interestingly, interaction with soluble polyQ-elongated fragments causes a structural distortion of wild-type AT3 prior to the formation of stable co-aggregates. These results establish the critical role of C-terminal, proteolytic fragments of AT3 in the molecular pathomechanism of SCA3, in strong support of the toxic fragment hypothesis.
a b s t r a c tHuman misfolding diseases arise when proteins adopt non-native conformations that endow them with a tendency to aggregate and form intra-and/or extra-cellular deposits. Molecular chaperones, such as Hsp70 and TCP-1 Ring Complex (TRiC)/chaperonin containing TCP-1 (CCT), have been implicated as potent modulators of misfolding disease. These chaperones suppress toxicity of disease proteins and modify early events in the aggregation process in a cooperative and sequential manner reminiscent of their functions in de novo protein folding. Further understanding of the role of Hsp70, TRiC, and other chaperones in misfolding disease is likely to provide important insight into basic pathomechanistic principles that could potentially be exploited for therapeutic purposes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.