Biodegradation of diethyl phthalate (DEP) has been shown to occur as a series of sequential steps common to the degradation of all phthalates. Primary degradation of DEP to phthalic acid (PA) has been reported to involve the hydrolysis of each of the two diethyl chains of the phthalate to produce the monoester monoethyl phthalate (MEP) and then PA. However, in soil co-contaminated with DEP and MeOH, biodegradation of the phthalate to PA resulted in the formation of three compounds, in addition to MEP. These were characterised by gas chromatography-electron ionisation mass spectrometry and nuclear magnetic resonance as ethyl methyl phthalate, dimethyl phthalate and monomethyl phthalate, and indicated the existence of an alternative pathway for the degradation of DEP in soil co-contaminated with MeOH. Transesterification or demethylation were proposed as the mechanisms for the formation of the three compounds, although the 7:1 ratio of H(2)O to MeOH means that transesterification is unlikely.
A laboratory-scale river microcosm was used to investigate the effect of the anionic surfactant sodium dodecyl sulphate (SDS) on the attachment of five Pseudomonas strains to natural river-sediment surfaces. Three of the Pseudomonas strains were chosen for their known ability to express alkylsulphatase enzymes capable of hydrolysing SDS, and the other two for their lack of such enzymes. One strain from each category was isolated from the indigenous bacterial population present in the river sediment used; other isolates were from soil or sewage. The alkylsulphatase phenotypes were confirmed by gel zymography of cell extracts. Addition of SDS to mixed suspensions of river sediment with any one of the biodegradation-competent strains stimulated the attachment of bacteria to the sediment particles. In contrast, the attachment of biodegradation-incompetent strains was weak and, moreover, was unaffected by SDS. The SDS-stimulated attachment for competent organisms coincided with rapid biodegradation of the surfactant. The primary intermediate of SDS biodegradation, dodecan-1-01, accumulated transiently, and the numbers of attached bacteria correlated closely with the amount of dodecan-1-01 present. Direct addition of dodecan-1-01 also stimulated attachment but the effect was more immediate compared with SDS, when there was a lag period of approximately 2 h. To account for these observations, a model is proposed in which SDS stimulates the attachment of biodegradation-competent bacteria through its conversion to dodecan-1-01, and it is hypothesized that the observed reversibility of the attachment is due to the subsequent removal of dodecan-1-01 by further bacterial metabolism.
The hypothesis that biodegradable surfactants stimulate the attachment of biodegradation-competent bacteria to surfaces has been re-evaluated using a variant of the surfactant-degrading bacterium Pseudomonas sp. DESl designated Pseudomonas sp. DES2. This variant was identical to the parental strain in terms of its carbon-utilization patterns and alcohol dehydrogenase and alkylsulfatase complements (enzymes involved in surfactant biodegradation), but differed markedly in its growth characteristics when using sodium dodecyl triethoxysulfate or triethylene glycol dodecyl ether as secondary carbon sources. Pseudomonas sp. DESl exhibited diauxie in these surfactant-based culture media in contrast to Pseudomonas sp. DES2, which exhibited single-phase growth. Pseudomonas sp. DES2 did not attach to river sediment in a microcosm system when challenged with a dose of either surfactant, although it did biodegrade the substrate. In contrast, Pseudomonas sp. DESl attached to the river sediment whilst biodegrading the test substrate. It is concluded that the ether-scission system, which is responsible for primary biodegradation of both substrates, is deregulated in Pseudomonas sp. DES2 in contrast to that in Pseudomonas sp. DESI, and that, contrary to a previous hypothesis, biodegradable surfactants do not necessarily stimulate the attachment of biodegradation-competent bacteria during their biodegradation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.