Food‐energy‐water (FEW) systems are increasingly vulnerable to natural hazards and climate change risks, yet humans depend on these systems for their daily needs, wellbeing, and survival. We investigated how adaptations related to FEW vulnerabilities are occurring and what the global community can learn about the interactions across these adaptations. We conducted a global analysis of a data set derived from scientific literature to present the first large scale assessment (n = 1,204) of evidence‐based FEW‐related climate adaptations. We found that the most frequently reported adaptations to FEW vulnerabilities by continent occurred in Africa (n = 495) and Asia (n = 492). Adaptations targeting food security were more robustly documented than those relevant to water and energy security, suggesting a greater global demand to address food security. Determining statistically significant associations, we found a network of connections between variables characterizing FEW‐related adaptations and showed interconnectedness between a variety of natural hazards, exposures, sectors, actors, cross‐cutting topics and geographic locations. Connectivity was found between the vulnerabilities food security, water, community sustainability, and response to sea level rise across cities, settlements, and key infrastructure sectors. Additionally, generalized linear regression models revealed potential synergies and tradeoffs among FEW adaptations, such as a necessity to synergistically adapt systems to protect food and water security and tradeoffs when simultaneously addressing exposures of consumption and production vs. poverty. Results from qualitative thematic coding showcased that adaptations documented as targeting multiple exposures are still limited in considering interconnectivity of systems and applying a nexus approach in their responses. These results suggest that adopting a nexus approach to future FEW‐related adaptations can have profound benefits in the management of scarce resources and with financial constraints.
Syringe filling can be considered a well-established manufacturing process and has been implemented by numerous contract manufacturing organizations and biopharmaceutical companies. However, its technical details and associated critical process parameters are rarely published. The information on high-concentration/viscosity formulation filling is particularly lacking. The purpose of this study is three-fold: (1) to reveal design details of a bench-top syringe filling unit; (2) to identify and optimize critical process parameters; (3) to apply the learning to practical filling operation. The outcomes of this study will benefit scientists and engineers who develop pre-filled syringe products by providing a better understanding of HC formulation filling principles and challenges.
Throughout the watershed modeling process, modelers, collaborators, and stakeholders make decisions about how to study various challenges that impact watersheds. To understand these decisions, we investigated values held by modelers who have worked or collaborated on projects within the Chesapeake Bay Watershed and their influence on decisions made during the modeling process. Using a mixed‐methodological approach, we designed an online survey and semistructured interviews to evaluate these complexities. In total, we received 27 survey responses from Chesapeake Bay Watershed modelers and conducted four semistructured interviews. The results indicate that ethical and epistemic values impact every stage of the watershed modeling process. These values occur alongside decisions, motivations, outcomes, and objectives that often involve collaborators and stakeholders in addition to the modelers. Therefore, including these values in scientific discourse can increase transparency around watershed modeling that guides policy decision making processes. Our results articulate that a discussion of the ethical and epistemic values present throughout the watershed modeling process should be incorporated into model documentation to clearly explain assumptions and decisions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.