BackgroundGastrointestinal cancer patients are susceptible to significant postoperative morbidity. The aim of this systematic review was to examine the effects of preoperative exercise therapy (PET) on patients undergoing surgery for GI malignancies.MethodsIn accordance with PRISMA statement, all prospective clinical trials of PET for patients diagnosed with GI cancer were identified by searching MEDLINE, Embase, Cochrane Library, ProQuest, PROSPERO, and DARE (March 8, 2017). The characteristics and outcomes of each study were extracted and reviewed. Risk of bias was evaluated using the Cochrane risk of bias tool by two independent reviewers.ResultsNine studies (534 total patients) were included in the systematic review. All interventions involved aerobic training but varied in terms of frequency, duration, and intensity. PET was effective in reducing heart rate, as well as increasing oxygen consumption and peak power output. The postoperative course was also improved, as PET was associated with more rapid recovery to baseline functional capacity after surgery.ConclusionsPET for surgical patients with gastrointestinal malignancies may improve physical fitness and aid in postoperative recovery.
Biomaterial-based delivery of angiogenic growth factors restores perfusion more effectively than bolus delivery methods in rodent models of peripheral vascular disease, but the same success has not yet been demonstrated in clinically relevant studies of aged or large animals. These studies explore, in clinically relevant models, a therapeutic angiogenesis strategy for the treatment of peripheral vascular disease that overcomes the challenges encountered in previous clinical trials. Alginate hydrogels providing sustained release of vascular endothelial growth factor (VEGF) and insulin-like growth factor-1 (IGF) were injected into ischemic hind limbs in middle-aged and old mice, and also in young rabbits, as a test of the scalability of this local growth factor treatment. Spontaneous perfusion recovery diminished with increasing age, and only the combination of VEGF and IGF delivery from gels significantly rescued perfusion in middle-aged (13 months) and old (20 months) mice. In rabbits, the delivery of VEGF alone or in combination with IGF from alginate hydrogels, at a dose 2 orders of magnitude lower than the typical doses used in past rabbit studies, enhanced perfusion recovery when given immediately after surgery, or as a treatment for chronic ischemia. Capillary density measurements and angiographic analysis demonstrated the benefit of gel delivery. These data together suggest that alginate hydrogels providing local delivery of low doses of VEGF and IGF constitute a safe and effective treatment for hind-limb ischemia in clinically relevant animal models, thereby supporting the potential clinical translation of this concept.
Dysfunctional T cells can mediate autoimmunity, but the inaccessibility of autoimmune tissues and the rarity of autoimmune T cells in the blood hinder their study. We describe a method to enrich and harvest autoimmune T cells in vivo by using a biomaterial scaffold loaded with protein antigens. In model antigen systems, we found that antigen-specific T cells become enriched within scaffolds containing their cognate antigens. When scaffolds containing lysates from an insulin-producing β-cell line were implanted subcutaneously in autoimmune diabetes–prone NOD mice, β-cell–reactive T cells homed to these scaffolds and became enriched. These T cells induced diabetes after adoptive transfer, indicating their pathogenicity. Furthermore, T-cell receptor (TCR) sequencing identified many expanded TCRs within the β-cell scaffolds that were also expanded within the pancreata of NOD mice. These data demonstrate the utility of biomaterial scaffolds loaded with disease-specific antigens to identify and study rare, therapeutically important T cells.
Real-time location systems are a novel technology capable of objectively and accurately monitoring patient movement and provide an innovative approach to promoting early mobilization after surgery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.