Electrowetting-on-dielectric (EWD) digital microfluidic laboratory-on-a-chip platforms demonstrate excellent performance in automating labor-intensive protocols. When coupled with an on-chip electroporation capability, these systems hold promise for streamlining cumbersome processes such as multiplex automated genome engineering (MAGE). We integrated a single Ti:Au electroporation electrode into an otherwise standard parallel-plate EWD geometry to enable high-efficiency transformation of Escherichia coli with reporter plasmid DNA in a 200 nL droplet. Test devices exhibited robust operation with more than 10 transformation experiments performed per device without cross-contamination or failure. Despite intrinsic electric-field nonuniformity present in the EP/EWD device, the peak on-chip transformation efficiency was measured to be 8.6 ± 1.0 × 10 cfu·μg for an average applied electric field strength of 2.25 ± 0.50 kV·mm. Cell survival and transformation fractions at this electroporation pulse strength were found to be 1.5 ± 0.3 and 2.3 ± 0.1%, respectively. Our work expands the EWD toolkit to include on-chip microbial electroporation and opens the possibility of scaling advanced genome engineering methods, like MAGE, into the submicroliter regime.
This paper reports on the use of a digital microfluidic platform to perform multiplex automated genetic engineering (MAGE) cycles on droplets containing Escherichia coli cells. Bioactivated magnetic beads were employed for cell binding, washing, and media exchange in the preparation of electrocompetent cells in the electrowetting-on-dieletric (EWoD) platform. On-cartridge electroporation was used to deliver oligonucleotides into the cells. In addition to the optimization of a magnetic bead-based benchtop protocol for generating and transforming electrocompetent E. coli cells, we report on the implementation of this protocol in a fully automated digital microfluidic platform. Bead-based media exchange and electroporation pulse conditions were optimized on benchtop for transformation frequency to provide initial parameters for microfluidic device trials. Benchtop experiments comparing electrotransformation of free and beadbound cells are presented. Our results suggest that dielectric shielding intrinsic to bead-bound cells significantly reduces electroporation field exposure efficiency. However, high transformation frequency can be maintained in the presence of magnetic beads through the application of more intense electroporation pulses. As a proof of concept, MAGE cycles were successfully performed on a commercial EWoD cartridge using variations of the optimal magnetic bead-based preparation procedure and pulse conditions determined by the benchtop results. Transformation frequencies up to 22% were achieved on benchtop; this frequency was matched within 1% (21%) by MAGE cycles on the microfluidic device. However, typical frequencies on the device remain lower, averaging 9% with a standard deviation of 9%. The presented results demonstrate the potential of digital microfluidics to perform complex and automated genetic engineering protocols. Published by AIP Publishing. [http://dx
It is difficult to develop effective treatments for neurodevelopmental genetic disorders, such as Rett syndrome, which are caused by a single gene mutation but trigger changes in numerous other genes, and thereby also severely impair functions of organs beyond the central nervous system (CNS). This challenge is further complicated by the lack of sufficiently broad and biologically relevant drug screens, and the inherent complexity in identifying clinically relevant targets responsible for diverse phenotypes. Here, we combined human gene regulatory network-based computational drug prediction with in vivo screening in a population-level diversity, CRISPR-edited, Xenopus laevis tadpole model of Rett syndrome to carry out target-agnostic drug discovery, which rapidly led to the identification of the FDA-approved drug vorinostat as a potential repurposing candidate. Vorinostat broadly improved both CNS and non-CNS (e.g., gastrointestinal, respiratory, inflammatory) abnormalities in a pre-clinical mouse model of Rett syndrome. This is the first Rett syndrome treatment to demonstrate pre-clinical efficacy across multiple organ systems when dosed after the onset of symptoms, and network analysis revealed a putative therapeutic mechanism for its cross-organ normalizing effects based on its impact on acetylation metabolism and post-translational modifications of microtubules.
Dysfunctional T cells can mediate autoimmunity, but the inaccessibility of autoimmune tissues and the rarity of autoimmune T cells in the blood hinder their study. We describe a method to enrich and harvest autoimmune T cells in vivo by using a biomaterial scaffold loaded with protein antigens. In model antigen systems, we found that antigen-specific T cells become enriched within scaffolds containing their cognate antigens. When scaffolds containing lysates from an insulin-producing β-cell line were implanted subcutaneously in autoimmune diabetes–prone NOD mice, β-cell–reactive T cells homed to these scaffolds and became enriched. These T cells induced diabetes after adoptive transfer, indicating their pathogenicity. Furthermore, T-cell receptor (TCR) sequencing identified many expanded TCRs within the β-cell scaffolds that were also expanded within the pancreata of NOD mice. These data demonstrate the utility of biomaterial scaffolds loaded with disease-specific antigens to identify and study rare, therapeutically important T cells.
DNA polymerases have revolutionized the biotechnology field due to their ability to precisely replicate stored genetic information. Screening variants of these enzymes for specific properties gives the opportunity to identify polymerases with different features. We have previously developed a singlemolecule DNA sequencing platform by coupling a DNA polymerase to an α-hemolysin pore on a nanopore array. Here, we use this approach to demonstrate a single-molecule method that enables rapid screening of polymerase variants in a multiplex manner. In this approach, barcoded DNA strands are complexed with polymerase variants and serve as templates for nanopore sequencing. Nanopore sequencing of the barcoded DNA reveals both the barcode identity and kinetic properties of the polymerase variant associated with the cognate barcode, allowing for multiplexed investigation of many polymerase variants in parallel on a single nanopore array. Further, we develop a robust classification algorithm that discriminates kinetic characteristics of the different polymerase mutants. As a proof of concept, we demonstrate the utility of our approach by screening a library of ∼100 polymerases to identify variants for potential applications of biotechnological interest. We anticipate our screening method to be broadly useful for applications that require polymerases with altered physical properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.