Oxytocin is a nonapeptide hormone that has a central role in the regulation of parturition and lactation. In this review, we address oxytocin receptor (OTR) signalling and its role in the myometrium during pregnancy and in labour. The OTR belongs to the rhodopsin-type (Class 1) of the G-protein coupled receptor superfamily and is regulated by changes in receptor expression, receptor desensitisation and local changes in oxytocin concentration. Receptor activation triggers a number of signalling events to stimulate contraction, primarily by elevating intracellular calcium (Ca(2+) ). This includes inositol-tris-phosphate-mediated store calcium release, store-operated Ca(2+) entry and voltage-operated Ca(2+) entry. We discuss each mechanism in turn and also discuss Ca(2+) -independent mechanisms such as Ca(2+) sensitisation. Because oxytocin induces contraction in the myometrium, both the activation and the inhibition of its receptor have long been targets in the management of dysfunctional and preterm labours, respectively. We discuss current and novel OTR agonists and antagonists and their use and potential benefit in obstetric practice. In this regard, we highlight three clinical scenarios: dysfunctional labour, postpartum haemorrhage and preterm birth.
ObjectiveTo investigate the effect of maternal obesity on mode of delivery following induction of labour (IOL) for prolonged pregnancy and subsequent intrapartum and neonatal complications.DesignRetrospective (historical) cohort study.SettingLiverpool Women's Hospital NHS Foundation Trust, UK.PopulationA total of 29 224 women with singleton pregnancies between 2004 and 2008 of whom 3076 had a prolonged pregnancy (defined as ≥290 days or 41+3 weeks of gestation) and received IOL.MethodsKruskal–Wallis test, chi-square test and multivariable logistic regression.Main outcome measuresMode of delivery and risk of delivery and neonatal complications in obese verses non-obese women following IOL.ResultsObese women had a significantly higher rate of IOL ending in caesarean section compared with women of normal weight following IOL (38.7% versus 23.8% primiparous; 9.9% versus 7.9% multiparous women, respectively); however, length of labour, incidence of postpartum haemorrhage and third-degree tear, rate of low cord blood pH, low Apgar scores and shoulder dystocia were similar in all body mass index categories. Complications included a higher incidence of fetal macrosomia and second-degree, but not third-degree, tear in primiparous women.ConclusionsHigher maternal body mass index at booking is associated with an increased risk of prolonged pregnancy and increased rate of IOL. Despite this, more than 60% of obese primiparous and 90% of multiparous women with prolonged pregnancies who were induced achieved vaginal delivery and labour complications in the obese women with prolonged pregnancies were largely comparable to those of normal weight women with prolonged pregnancies. Our data suggest that IOL for prolonged pregnancy in obese women is a reasonable and safe management option.
Cyclotides are plant peptides comprising a circular backbone and three conserved disulfide bonds that confer them with exceptional stability. They were originally discovered in Oldenlandia affinis based on their use in traditional African medicine to accelerate labor. Recently, cyclotides have been identified in numerous plant species of the coffee, violet, cucurbit, pea, potato, and grass families. Their unique structural topology, high stability, and tolerance to sequence variation make them promising templates for the development of peptide-based pharmaceuticals. However, the mechanisms underlying their biological activities remain largely unknown; specifically, a receptor for a native cyclotide has not been reported hitherto. Using bioactivity-guided fractionation of an herbal peptide extract known to indigenous healers as "kalatakalata," the cyclotide kalata B7 was found to induce strong contractility on human uterine smooth muscle cells. Radioligand displacement and second messenger-based reporter assays confirmed the oxytocin and vasopressin V 1a receptors, members of the G proteincoupled receptor family, as molecular targets for this cyclotide. Furthermore, we show that cyclotides can serve as templates for the design of selective G protein-coupled receptor ligands by generating an oxytocin-like peptide with nanomolar affinity. This nonapeptide elicited dose-dependent contractions on human myometrium. These observations provide a proof of concept for the development of cyclotide-based peptide ligands.yclotides are head-to-tail cyclized plant peptides containing three conserved disulfide bonds in a knotted arrangement known as a cyclic cystine-knot motif (1). This confers them high stability (2) and presumably improves their oral bioactivity relative to their linear counterparts (3). They were first discovered in a decoction of Oldenlandia affinis DC. (Rubiaceae) leaves, an herbal remedy used in traditional African medicine during childbirth (4). The observed induction of labor and shortened delivery time were later studied on isolated rat and rabbit uteri and on human uterine strips (4, 5). The peptides responsible for the contractility effects (5) raised interest because they survived boiling, presumably as a result of their unique 3D structure, which was elucidated in 1995 (6). Since then, several plant species of the coffee (Rubiaceae) (7), violet (Violaceae) (8), legume (Fabaceae) (9), potato (Solanaceae) (10) and grass (Poaceae) families (11) have been identified to produce cyclotides. Currently, ∼300 sequences have been reported (12), and the predicted number of >50,000 cyclotides in Rubiaceae alone (7) suggests them to be one of the largest peptide classes within the plant kingdom. Their high intercysteine sequence variability and structural plasticity (13), together with intrinsic bioactivities, make them interesting templates for the development of novel pharmaceuticals (14).However, five decades after the discovery of cyclotides, there still is not any information about specific molecular targe...
Much has been written about the effects of aging on reproductive function, especially female fertility. Much less is known about how aging may affect the contractility of the smooth muscle within the uterus, the myometrium. The myometrium is active through a woman’s entire life, not just during pregnancy. Here we will discuss briefly the contractile functions of the uterus and the changes it undergoes throughout the stages of a woman’s life from menstruation and the menopause, before evaluating the evidence for any changes in myometrial contractility and responses as women age, with a particular focus on women of advanced maternal age. We present original contractility analysis for the widest data set for human myometrium so far examined, and determine inherent spontaneous activity as well as responses to depolarisation and stimulation with oxytocin. Our data show that in the non-pregnant state there is a significant decrease in contractility for both spontaneous and depolarised-induced contractions, with age. We suggest that muscle atrophy and down regulation of Ca channels may account for this. Interestingly in pregnant myometrium we found a wide range of contractile ability between women and little evidence for decreased spontaneous activity between the ages of 25–40. Oxytocin responses appear to be more affected by aging, a finding that is consistent with previously reported clinical findings, and may partly be the result of membrane lipids such as cholesterol, increasing as women age. The marked differences between the age-related decline of force beyond age 30 in non-pregnant uterus, and the lack of difference in the pregnant state over this period, shows that the uterus retains its ability to respond to gestational hormones. The growth of the pregnant uterus and increase in content of myofibrillar proteins, may abolish any previous age-related force deficit. This finding is consistent with what is apparent for postmenopausal women in their 50s and 60s; that with the appropriate hormonal stimulation the uterus can allow an embryo to implant, and then without further intervention, carry the foetus to term. It is tempting therefore to speculate that unlike other well documented declines in female reproductive functions with age, the myometrium remains able to function into a woman’s 7th decade.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.