Singlet oxygen (1O2) generation quantum yields from chromophoric dissolved organic matter (CDOM) have been reported for many samples over the past 4 decades. Yet even for standardized isolates such as those from the International Humic Substance Society (IHSS), wide-ranging values exist in the literature. In this manuscript, time-resolved 1O2 phosphorescence was used to determine the 1O2 quantum yields (ΦΔ) of a variety of dissolved organic matter (DOM) isolates and natural waters. In general, the 1O2 quantum yield values in this study are in the middle, although below the median of the range of past reported values (e.g., for Suwannee River Natural Organic Matter IHSS isolate: 1.8% vs 0.23–2.89%). Notably, hydrophobic neutral fractions of DOM isolates were found to possess the highest 1O2 quantum yields, an interesting result given that these fractions are not retained in typical humic and fulvic acid isolation procedures that use XAD resins. The excitation wavelength dependence of 1O2 generation from CDOM was also examined, and an approximate linear decrease with longer excitation wavelength was observed. This work advances the understanding of CDOM photoprocesses, especially in relation to wavelength-dependent 1O2 production, which is valuable for assessing real-world environmental behavior.
In this laboratory experiment, students explore the aquatic photochemical fate of ranitidine and cimetidine, two common wastewater-derived pharmaceutical pollutants. It provides an engaging environmental context for students to develop knowledge of reaction kinetics and photochemistry, as well as skill using analytical instrumentation. This versatile experiment consists of two basic modules, three optional advanced modules, and additional add-ons that may be performed in various combinations to meet the unique learning objectives of general, analytical, physical, and environmental chemistry courses and science outreach activities. It may be performed as a traditional lab experiment or as an entirely remote exercise with an increased focus on data analysis and interpretation using provided example data sets. All photolysis experiments are carried out by preparing solutions of ranitidine or cimetidine in various matrices, irradiating the samples, and periodically removing subsamples for HPLC analysis of the compound of interest. Pseudo-first-order kinetic plots are then generated to determine rate constants that are used to draw conclusions about photolysis pathways or to calculate additional kinetic parameters. In the two basic modules, cimetidine is found to degrade appreciably only when irradiated in the presence natural organic matter (NOM), indicating an indirect, photosensitized degradation pathway. In contrast, ranitidine degrades in pure buffer and in the presence of NOM with comparable rate constants, highlighting the predominant role of direct photolysis. In the advanced modules, students calculate ranitidine direct photolysis quantum yields and examine the significance of singlet oxygen as a photochemically produced reactive intermediate. The two basic modules may be completed in two threeto five-hour lab periods while the advanced modules require additional time. This experiment requires only a HPLC, inexpensive chemicals, and common glassware and lab equipment if performed in person, and a personal computer if performed remotely.
The steady-state concentration of singlet oxygen within a lake ([1O2]SS) is an important parameter that can affect the environmental half-life of pollutants and environmental fate modelling. However, values of [1O2]SS...
Photochemical reactions in surface waters play important roles in element cycling and in the removal of organic contaminants, among other processes. A central environmental variable affecting photochemical processes in surface waters is the incoming solar irradiance, as this initiates these processes. However, clear-sky incident irradiance spectra are often used when evaluating the fate of aquatic contaminants, leading to an overestimation of contaminant decay rates due to photochemical transformation. In this work, incident irradiance satellite data were used to develop global-scale non-clear-sky correction factors for commonly used reference irradiance spectra. Non-clear-sky conditions can decrease incident irradiance by over 90% depending on the geographic location and time of the year, with latitudes above 40°N being most heavily affected by seasons. The impact of non-clear-sky conditions on contaminant half-lives was illustrated in a case study of triclosan in lake Greifensee, which showed a 39% increase in the triclosan half-life over the course of a year under non-clear-sky conditions. A global annual average correction factor of 0.76 was determined as an approximate way to account for non-clear-sky conditions. The correction factors are developed at monthly and seasonal resolutions for every location on the globe between 70°N and 60°S at a 4 km spatial resolution and can be used by researchers, practitioners, and regulators who need improved estimates of incident irradiance.
<p>In this laboratory experiment, students explore the aquatic photochemical fate of ranitidine and cimetidine, two common wastewater-derived pharmaceutical pollutants. It provides an engaging environmental context for students to develop knowledge of reaction kinetics and photochemistry, as well as skill using analytical instrumentation. This versatile experiment consists of two basic modules, three optional advanced modules, and additional add-ons that may be performed in various combinations to meet the unique learning objectives of general, analytical, physical, and environmental chemistry courses and science outreach activities. It may be performed as a traditional lab experiment or as an entirely remote exercise with an increased focus on data analysis and interpretation using provided example data sets. All photolysis experiments are carried out by preparing solutions of ranitidine or cimetidine in various matrices, irradiating the samples, and periodically removing subsamples for HPLC analysis of the compound of interest. Pseudo-first-order kinetic plots are then generated to determine rate constants that are used to draw conclusions about photolysis pathways or to calculate additional kinetic parameters. In the two basic modules, cimetidine is found to degrade appreciably only when irradiated in the presence natural organic matter (NOM), indicating an indirect, photosensitized degradation pathway. In contrast, ranitidine degrades in pure buffer and in the presence of NOM with comparable rate constants, highlighting the predominant role of direct photolysis. In the advanced modules, students calculate ranitidine direct photolysis quantum yields and examine the significance of singlet oxygen as a photochemically produced reactive intermediate. The two basic modules may be completed in two three- to five-hour lab periods while the advanced modules require additional time. This experiment requires only a HPLC, inexpensive chemicals, and common glassware and lab equipment if performed in person, and a personal computer if performed remotely.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.