Trypanosomes compartmentalize many metabolic enzymes in glycosomes, peroxisome-related microbodies that are essential to parasite survival. While it is understood that these dynamic organelles undergo profound changes in protein composition throughout life cycle differentiation, the adaptations that occur in response to changes in environmental conditions are less appreciated. We have adopted a fluorescent-organelle reporter system in procyclic Trypanosoma brucei by expressing a fluorescent protein (FP) fused to a glycosomal targeting sequence (peroxisome-targeting sequence 2 [PTS2]). In these cell lines, PTS2-FP is localized within import-competent glycosomes, and organelle composition can be analyzed by microscopy and flow cytometry. Using this reporter system, we have characterized parasite populations that differ in their glycosome composition. In glucoserich medium, two parasite populations are observed; one population harbors glycosomes bearing the full repertoire of glycosome proteins, while the other parasite population contains glycosomes that lack the usual glycosome-resident proteins but do contain the glycosome membrane protein TbPEX11. Interestingly, these cells lack TbPEX13, a protein essential for the import of proteins into the glycosome. This bimodal distribution is lost in low-glucose medium. Furthermore, we have demonstrated that changes in environmental conditions trigger changes in glycosome protein composition. These findings demonstrate a level of procyclic glycosome diversity heretofore unappreciated and offer a system by which glycosome dynamics can be studied in live cells. This work adds to our growing understanding of how the regulation of glycosome composition relates to environmental sensing.T rypanosoma brucei, the causative agent of human African trypanosomiasis, has a complex life cycle, with developmental stages in the bloodstream of the mammalian host and the tsetse fly vector. Each host provides a distinct environment in which the parasites must survive. Bloodstream-form (BSF) parasites are bathed in glucose and generate ATP exclusively by glycolysis. While in the tsetse fly, the procyclic-form (PF) parasites experience a drop in glucose levels with a concomitant increase in the availability of amino acids (namely, proline). Under these conditions, the parasite adapts its metabolism, generating ATP from both glycolysis and amino acid metabolism (1).In trypanosomes, many of the enzymes involved in glycolysis are contained within membrane-bounded organelles called glycosomes (reviewed in references 2, 3, and 4). Similarities between the metabolic activities and the matrix protein import machineries of glycosomes and peroxisomes indicate an evolutionary relationship between the two organelles. In contrast to peroxisomes, however, glycosomes are essential, making mechanisms of glycosome biogenesis and maintenance attractive drug targets.Glycosome dynamics are governed by a number of processes, including organelle biogenesis, protein import, and changes in protein composition. In t...
Trypanosomatid parasites, including Trypanosoma and Leishmania, are the causative agents of lethal diseases threatening millions of people around the world. These organisms compartmentalize glycolysis in essential, specialized peroxisomes called glycosomes. Peroxisome proliferation can occur through growth and division of existing organelles and de novo biogenesis from the endoplasmic reticulum. The level that each pathway contributes is debated. Current evidence supports the concerted contribution of both mechanisms in an equilibrium that can vary depending on environmental conditions and metabolic requirements of the cell. Homologs of a number of peroxins, the proteins involved in peroxisome biogenesis and matrix protein import, have been identified in T. brucei. Based on these findings, it is widely accepted that glycosomes proliferate through growth and division of existing organelles; however, to our knowledge, a de novo mechanism of biogenesis has not been directly demonstrated. Here, we review recent findings that provide support for the existence of an endoplasmic reticulum (ER)-derived de novo pathway of glycosome biogenesis in T. brucei. Two studies recently identified PEX13.1, a peroxin involved in matrix protein import, in the ER of procyclic form T. brucei. In other eukaryotes, peroxins including PEX13 have been found in the ER of cells undergoing de novo biogenesis of peroxisomes. In addition, PEX16 and PEX19 have been characterized in T. brucei, both of which are important for de novo biogenesis in other eukaryotes. Because glycosomes are rapidly remodeled via autophagy during life cycle differentiation, de novo biogenesis could provide a method of restoring glycosome populations following turnover. Together, the findings we summarize provide support for the hypothesis that glycosome proliferation occurs through growth and division of pre-existing organelles and de novo biogenesis of new organelles from the ER and that the level each mechanism contributes is influenced by glucose availability.
Neurodegenerative diseases are among the most widespread diseases affecting humans, and the number of patients is only rising. Seaweed polysaccharide extracts show significant neuroprotective and reparative activities. Seaweed polysaccharides might provide the next big breakthrough in neurodegenerative disease treatment. This paper reviews the applications of seaweed polysaccharides as potential treatments of neurodegenerative diseases. The particular focus is on fucoidan, ulvan, and their derivatives as potential agents to treat Alzheimer’s disease. This review provides a critical update on the progress in this important research area.
Zoonotic diseases are infectious diseases that pass from animals to humans. These include diseases caused by viruses, bacteria, fungi, and parasites and can be transmitted through close contact or through an intermediate insect vector. Many of the world’s most problematic zoonotic diseases are viral diseases originating from animal spillovers. The Spanish influenza pandemic, Ebola outbreaks in Africa, and the current SARS-CoV-2 pandemic are thought to have started with humans interacting closely with infected animals. As the human population grows and encroaches on more and more natural habitats, these incidents will only increase in frequency. Because of this trend, new treatments and prevention strategies are being explored. Glycosaminoglycans (GAGs) are complex linear polysaccharides that are ubiquitously present on the surfaces of most human and animal cells. In many infectious diseases, the interactions between GAGs and zoonotic pathogens correspond to the first contact that results in the infection of host cells. In recent years, researchers have made progress in understanding the extraordinary roles of GAGs in the pathogenesis of zoonotic diseases, suggesting potential therapeutic avenues for using GAGs in the treatment of these diseases. This review examines the role of GAGs in the progression, prevention, and treatment of different zoonotic diseases caused by viruses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.