The eubacterial genus Wolbachia comprises one of the most abundant groups of obligate intracellular bacteria, and it has a host range that spans the phyla Arthropoda and Nematoda. Here we developed a multilocus sequence typing (MLST) scheme as a universal genotyping tool for Wolbachia. Internal fragments of five ubiquitous genes (gatB, coxA, hcpA, fbpA, and ftsZ) were chosen, and primers that amplified across the major Wolbachia supergroups found in arthropods, as well as other divergent lineages, were designed. A supplemental typing system using the hypervariable regions of the Wolbachia surface protein (WSP) was also developed. Thirty-seven strains belonging to supergroups A, B, D, and F obtained from singly infected hosts were characterized by using MLST and WSP. The number of alleles per MLST locus ranged from 25 to 31, and the average levels of genetic diversity among alleles were 6.5% to 9.2%. A total of 35 unique allelic profiles were found. The results confirmed that there is a high level of recombination in chromosomal genes. MLST was shown to be effective for detecting diversity among strains within a single host species, as well as for identifying closely related strains found in different arthropod hosts. Identical or similar allelic profiles were obtained for strains harbored by different insect species and causing distinct reproductive phenotypes. Strains with similar WSP sequences can have very different MLST allelic profiles and vice versa, indicating the importance of the MLST approach for strain identification. The MLST system provides a universal and unambiguous tool for strain typing, population genetics, and molecular evolutionary studies. The central database for storing and organizing Wolbachia bacterial and host information can be accessed at http://pubmlst.org/wolbachia/.
Using microarray-based comparative genome hybridization (mCGH), the genomic content of Wolbachia pipientis wMel from Drosophila melanogaster was compared to the closely related Wolbachia from D. innubila (wInn), D. santomea (wSan), and three strains from D. simulans (wAu, wRi, wSim). A large number of auxiliary genes are identified in these five strains, with most absent/ divergent genes being unique to a given strain. Each strain caused an average of~60 genes to be removed from the core genome. As such, these organisms do not appear to have the streamlined genomes expected of obligate intracellular bacteria. Prophage, hypothetical and ankyrin repeat genes are over-represented in the absent/divergent genes, with 21-87 % of absent/divergent genes coming from prophage regions. The only wMel region absent/divergent in all five query strains is that containing WD_0509 to WD_0511, including a DNA mismatch repair protein MutL-2, a degenerate RNase, and a conserved hypothetical protein. A region flanked by the two portions of the WO-B prophage in wMel is found in four of the five Wolbachia strains as well as on a plasmid of a rickettsial endosymbiont of Ixodes scapularis, suggesting lateral gene transfer between these two obligate intracellular species. Overall, these insect-associated Wolbachia have highly mosaic genomes, with lateral gene transfer playing an important role in their diversity and evolution. INTRODUCTIONWolbachia bacteria are common obligate intracellular endosymbionts that infect a wide variety of invertebrates, including arthropods and filarial nematodes. The arthropod-infecting Wolbachia strains are maternally inherited and exert unusual effects on host reproduction, including: (1) parthenogenesis, whereby infected virgin females produce infected female offspring, (2) male killing, whereby infected male embryos fail to develop, (3) feminization, whereby genetic males develop into reproductively capable females, and (4) cytoplasmic incompatibility, the most common phenotype, whereby the offspring of uninfected females and infected males fail to develop (Stouthamer et al., 1999;Werren et al., 2008). These phenotypes increase the number of infected hosts within a population, promoting the frequency of Wolbachia. Although insect-associated Wolbachia are typically considered reproductive parasites, some Abbreviation: mCGH, microarray comparative genome hybridization.3These authors contributed equally to this paper. et al., 2008). In addition to the above nomenclature, another convention has been proposed that combines all genes found in .1 % of strains into a species genome, and any genes in ,1 % of strains are considered of foreign origin or on the decline (Boucher et al., 2001;Lan & Reeves, 2000).In order to examine the core genome and the genetic flux between W. pipientis strains, we examined the genomic content of five strains using microarray-based comparative genomic hybridization (mCGH) on a Wolbachia microarray. DNAs from reference and query organisms are differentially labelled and competitive...
Lowe Syndrome is a developmental disorder characterized by eye, kidney, and neurological pathologies, and is caused by mutations in the phosphatidylinositol-5-phosphatase OCRL. OCRL plays diverse roles in endocytic and endolysosomal trafficking, cytokinesis, and ciliogenesis, but it is unclear which of these cellular functions underlie specific patient symptoms. Here, we show that mutation of Drosophila OCRL causes cell-autonomous activation of hemocytes, which are macrophage-like cells of the innate immune system. Among many cell biological defects that we identified in docrl mutant hemocytes, we pinpointed the cause of innate immune cell activation to reduced Rab11-dependent recycling traffic and concomitantly increased Rab7-dependent late endosome traffic. Loss of docrl amplifies multiple immune-relevant signals, including Toll, Jun kinase, and STAT, and leads to Rab11-sensitive mis-sorting and excessive secretion of the Toll ligand Spåtzle. Thus, docrl regulation of endosomal traffic maintains hemocytes in a poised, but quiescent state, suggesting mechanisms by which endosomal misregulation of signaling may contribute to symptoms of Lowe syndrome.
ImportanceSex differences are established in associations between apolipoprotein E (APOE) ε4 and cognitive impairment in Alzheimer disease (AD). However, it is unclear whether sex-specific cognitive consequences of APOE are consistent across races and extend to the APOE ε2 allele.ObjectiveTo investigate whether sex and race modify APOE ε4 and ε2 associations with cognition.Design, Setting, and ParticipantsThis genetic association study included longitudinal cognitive data from 4 AD and cognitive aging cohorts. Participants were older than 60 years and self-identified as non-Hispanic White or non-Hispanic Black (hereafter, White and Black). Data were previously collected across multiple US locations from 1994 to 2018. Secondary analyses began December 2021 and ended September 2022.Main Outcomes and MeasuresHarmonized composite scores for memory, executive function, and language were generated using psychometric approaches. Linear regression assessed interactions between APOE ε4 or APOE ε2 and sex on baseline cognitive scores, while linear mixed-effect models assessed interactions on cognitive trajectories. The intersectional effect of race was modeled using an APOE × sex × race interaction term, assessing whether APOE × sex interactions differed by race. Models were adjusted for age at baseline and corrected for multiple comparisons.ResultsOf 32 427 participants who met inclusion criteria, there were 19 007 females (59%), 4453 Black individuals (14%), and 27 974 White individuals (86%); the mean (SD) age at baseline was 74 years (7.9). At baseline, 6048 individuals (19%) had AD, 4398 (14%) were APOE ε2 carriers, and 12 538 (38%) were APOE ε4 carriers. Participants missing APOE status were excluded (n = 9266). For APOE ε4, a robust sex interaction was observed on baseline memory (β = −0.071, SE = 0.014; P = 9.6 × 10−7), whereby the APOE ε4 negative effect was stronger in females compared with males and did not significantly differ among races. Contrastingly, despite the large sample size, no APOE ε2 × sex interactions on cognition were observed among all participants. When testing for intersectional effects of sex, APOE ε2, and race, an interaction was revealed on baseline executive function among individuals who were cognitively unimpaired (β = −0.165, SE = 0.066; P = .01), whereby the APOE ε2 protective effect was female-specific among White individuals but male-specific among Black individuals.Conclusions and RelevanceIn this study, while race did not modify sex differences in APOE ε4, the APOE ε2 protective effect could vary by race and sex. Although female sex enhanced ε4-associated risk, there was no comparable sex difference in ε2, suggesting biological pathways underlying ε4-associated risk are distinct from ε2 and likely intersect with age-related changes in sex biology.
BackgroundThe Australian Imaging, Biomarkers and Lifestyle (AIBL) Study is a prospective study collecting extensive cognitive, clinical, fluid, and imaging biomarkers data from older adults living in Australia. Integration of outcomes between large prospective studies of AD will provide greater precision in models of AD brain‐behavior relationships, so it is important to align composite scores for cognitive domains between such studies.MethodsDetailed methods for AIBL, the Alzheimer’s Disease Neuroimaging Initiative (ADNI) and the National Alzheimer’s Coordinating Center (NACC) have been published. Briefly, AIBL participants had cognition assessed with an extensive neuropsychological test battery alongside health and biomarker assessments at entry and each 18‐months thereafter. Granular‐level cognitive data were obtained and an expert panel of two neuropsychologists and a behavioral neurologist categorized each element as assessing memory, executive functioning, language, visuospatial, or none of these, exactly as we have done previously. We also identified elements we had previously calibrated from other studies; after careful quality control and confirmation these served as anchors enabling co‐calibration. We used confirmatory factor analysis bi‐factor models to calibrate the AIBL battery with other studies. We used those calibrations to obtain co‐calibrated scores for all AIBL participants at every study visit. Here we show descriptive statistics for baseline visits, separately by diagnosis (normal cognition, mild cognitive impairment (MCI), dementia) for two enrollment waves for AIBL as well as for each phase of ADNI and across the Uniform Data Set (UDS) 1 & 2 (UDS1/2) and UDS3 time periods for NACC.ResultsBox plots for memory, executive functioning, language, and visuospatial for people with normal cognition are in Figure 1, MCI in Figure 2, and dementia in Figure 3. These figures show there is substantial cognitive variation across waves within these disease stage groups and across studies.ConclusionCo‐calibrated neuropsychological domain scores provide a common metric for integrating cognitive data across studies. Co‐calibrated scores aggregated across large prospective AD studies such as AIBL, ADNI, and NACC provide a foundation for large‐scale models of the development of AD and can serve as phenotypes for genetics studies. Co‐calibrated scores are available from AIBL, ADNI, and from NACC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.