The forest canopy is the functional interface between 90% of Earth's terrestrial biomass and the atmosphere. Multidisciplinary research in the canopy has expanded concepts of global species richness, physiological processes, and the provision of ecosystem services. Trees respond in a species-specific manner to elevated carbon dioxide levels, while climate change threatens plant-animal interactions in the canopy and will likely alter the production of biogenic aerosols that affect cloud formation and atmospheric chemistry.
Summary• It has long been believed that plant species from the tropics have higher levels of traits associated with resistance to herbivores than do species from higher latitudes. A meta-analysis recently showed that the published literature does not support this theory. However, the idea has never been tested using data gathered with consistent methods from a wide range of latitudes.• We quantified the relationship between latitude and a broad range of chemical and physical traits across 301 species from 75 sites world-wide.• Six putative resistance traits, including tannins, the concentration of lipids (an indicator of oils, waxes and resins), and leaf toughness were greater in highlatitude species. Six traits, including cyanide production and the presence of spines, were unrelated to latitude. Only ash content (an indicator of inorganic substances such as calcium oxalates and phytoliths) and the properties of species with delayed greening were higher in the tropics.• Our results do not support the hypothesis that tropical plants have higher levels of resistance traits than do plants from higher latitudes. If anything, plants have higher resistance toward the poles. The greater resistance traits of high-latitude species might be explained by the greater cost of losing a given amount of leaf tissue in low-productivity environments.
SummaryMost plant species have a range of traits that deter herbivores. However, understanding of how different defences are related to one another is surprisingly weak. Many authors argue that defence traits trade off against one another, while others argue that they form coordinated defence syndromes.We collected a dataset of unprecedented taxonomic and geographic scope (261 species spanning 80 families, from 75 sites across the globe) to investigate relationships among four chemical and six physical defences.Five of the 45 pairwise correlations between defence traits were significant and three of these were tradeoffs. The relationship between species' overall chemical and physical defence levels was marginally nonsignificant (P = 0.08), and remained nonsignificant after accounting for phylogeny, growth form and abundance. Neither categorical principal component analysis (PCA) nor hierarchical cluster analysis supported the idea that species displayed defence syndromes.Our results do not support arguments for tradeoffs or for coordinated defence syndromes. Rather, plants display a range of combinations of defence traits. We suggest this lack of consistent defence syndromes may be adaptive, resulting from selective pressure to deploy a different combination of defences to coexisting species.
Summary1 A data base on the flowering phenology of the Wet Tropics bioregion of far northern Queensland, Australia, has been constructed, based upon over 36 774 records from two Queensland-based herbaria. 2 Flowering patterns have been analysed against the predictions of three overlapping hypotheses based on climatic, biotic and phylogenetic explanations. No one hypothesis is supported to the exclusion of the others. 3 Patterns of flowering in the Wet Tropics show marked seasonal increases and decreases, except in the northern lowlands. In general this seasonality correlates with rainfall and temperature and is exacerbated by increasing latitude and altitude. 4 There is little or no statistical evidence for the over-dispersion of flowering times that would indicate a competition-avoidance mechanism: flowering within taxa or morphological groups tends to be clumped (and if not, is random). 5 That clumping of flowering within taxa does not coincide with a single season provides support for a mass action hypothesis based on the minimization of generalist predation and/or the avoidance of flower predation. 6 Timing of flowering did show some consistency among species within genera and within families, but there was little consistency at higher taxonomic levels. Clear separation of the biotic and phylogenetic hypotheses requires greater knowledge of pollination ecology and phylogeny of this large and diverse flora. 7 Understanding of flowering patterns and their underlying determining mechanisms is a key to assessing the ecosystem health of the forest. Our results highlight the importance of competitive interactions and of physical and evolutionary factors as determinants of flowering time, intensity and co-occurrence in tropical forests.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.