We genetically controlled compartmentalization in eukaryotic cells by heterologous expression of bacterial encapsulin shell and cargo proteins to engineer enclosed enzymatic reactions and size-constrained metal biomineralization. The shell protein (EncA) from Myxococcus xanthus auto-assembles into nanocompartments inside mammalian cells to which sets of native (EncB,C,D) and engineered cargo proteins self-target enabling localized bimolecular fluorescence and enzyme complementation. Encapsulation of the enzyme tyrosinase leads to the confinement of toxic melanin production for robust detection via multispectral optoacoustic tomography (MSOT). Co-expression of ferritin-like native cargo (EncB,C) results in efficient iron sequestration producing substantial contrast by magnetic resonance imaging (MRI) and allowing for magnetic cell sorting. The monodisperse, spherical, and iron-loading nanoshells are also excellent genetically encoded reporters for electron microscopy (EM). In general, eukaryotically expressed encapsulins enable cellular engineering of spatially confined multicomponent processes with versatile applications in multiscale molecular imaging, as well as intriguing implications for metabolic engineering and cellular therapy.
Much is known about the neuronal cell types and circuitry of the mammalian respiratory brainstem and its role in normal, quiet breathing. Our understanding of the role of respiration in the context of vocal production, however, is very limited. Songbirds contain a well-defined neural circuit, known as the song system, which is necessary for song production and is strongly coupled to the respiratory system. A major target of this system is nucleus parambigualis (PAm) in the ventrolateral medulla, a structure that controls inspiration by way of its bulbospinal projections but is also an integral part of the song-pattern generation circuit by way of its "thalamocortical" projections to song-control nuclei in the telencephalon. We have mapped out PAm to characterize the cell types and its functional organization. Extracellular single units were obtained in anesthetized adult male zebra finches while measuring air sac pressure to monitor respiration. Single units were characterized by their discharge patterns and the phase of the activity in the respiratory cycle. Several classes of neurons were identified and were analogous to those reported for mammalian medullary respiratory neurons. The majority of the neurons in PAm was classified as inspiratory augmenting or preinspiratory, although other basic discharge patterns were observed as well. The well-characterized connectivity of PAm within the vocal motor circuit and the similarity of its neural firing patterns to the rostral ventral respiratory group and pre-Bötzinger complex of mammals make it an ideal system for investigating the integration of breathing and vocalization.
Targeted manipulations of neural activity are essential approaches in neuroscience and neurology, but monitoring such procedures in the living brain remains a significant challenge. Here we introduce a paramagnetic analog of the drug muscimol that enables targeted neural inactivation to be performed with feedback from magnetic resonance imaging. We validate pharmacological properties of the compound in vitro, and show that its distribution in vivo reliably predicts perturbations to brain activity.
Evaluation of the magnitudes of intrinsically rewarding stimuli is essential for assigning value and guiding behavior. By combining parametric manipulation of a primary reward, medial forebrain bundle (MFB) microstimulation, with functional magnetic imaging (fMRI) in rodents, we delineated a broad network of structures activated by behaviorally characterized levels of rewarding stimulation. Correlation of psychometric behavioral measurements with fMRI response magnitudes revealed regions whose activity corresponded closely to the subjective magnitude of rewards. The largest and most reliable focus of reward magnitude tracking was observed in the shell region of the nucleus accumbens (NAc). Although the nonlinear nature of neurovascular coupling complicates interpretation of fMRI findings in precise neurophysiological terms, reward magnitude tracking was not observed in vascular compartments and could not be explained by saturation of region-specific hemodynamic responses. In addition, local pharmacological inactivation of NAc changed the profile of animals’ responses to rewards of different magnitudes without altering mean reward response rates, further supporting a hypothesis that neural population activity in this region contributes to assessment of reward magnitudes.
We have genetically controlled compartmentalization in eukaryotic cells by heterologous expression of bacterial encapsulin shell and cargo proteins to engineer enclosed enzymatic reactions and size-controlled metal biomineralization. The orthogonal shell protein (EncA) from M. xanthus efficiently auto-assembled inside mammalian cells into nanocompartments to which sets of native (EncB,C,D) and engineered cargo proteins self-targeted. This enabled localized bimolecular fluorescence and enzyme complementation with selective access to substrates via the pores in the nanoshell. Encapsulation of the enzyme tyrosinase lead to the confinement of toxic melanin production for robust detection via multispectral optoacoustic tomography (MSOT). Co-expression of ferritin-like native cargo (EncB or EncC) resulted in efficient iron sequestration that produced substantial contrast by magnetic resonance imaging (MRI) and enabled magnetic cell sorting. The monodisperse, spherical, and iron-loading nanoshells also proved to be excellent genetically encoded markers for cryo-electron tomography (cryo-ET). In general, eukaryotically expressed encapsulins enable cellular engineering of spatially confined multicomponent processes with versatile applications in multiscale molecular imaging, as well as intriguing implications for metabolic engineering and cellular therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.