Redox dysregulation in cancer cells represents a chemical vulnerability that can be targeted by prooxidant redox intervention. Dietary constituents that contain an electrophilic Michael acceptor pharmacophore may therefore display promising chemopreventive and chemotherapeutic anti-cancer activity. Here, we demonstrate that the cinnamon-derived dietary Michael acceptor trans-cinnamic aldehyde (CA) impairs melanoma cell proliferation and tumor growth. Feasibility of therapeutic intervention using high doses of CA (120 mg/kg, p.o., q.d., 10 days) was demonstrated in a human A375 melanoma SCID-mouse xenograft model. Low micromolar concentrations (IC 50 < 10 μM) of CA, but not closely related CA-derivatives devoid of Michael acceptor activity, suppressed proliferation of human metastatic melanoma cell lines (A375, G361, LOX) with G1 cell cycle arrest, elevated intracellular ROS, and impaired invasiveness. Expression array analysis revealed that CA induced an oxidative stress response in A375 cells, up-regulating heme oxygenase-1 (HMOX1), sulfiredoxin 1 homolog (SRXN1), thioredoxin reductase 1 (TXNRD1), and other genes including the cell cycle regulator and stress-responsive tumor suppressor gene cyclin-dependent kinase inhibitor 1A (CDKN1A), a key mediator of G1 phase arrest. CA, but not Michael-inactive derivatives, inhibited NFκB transcriptional activity and TNFα-induced IL-8 production in A375 cells. These findings support a previously unrecognized role of CA as a dietary Michael acceptor with potential anticancer activity.
Imatinib (Gleevec) is currently the frontline therapy for chronic myeloid leukemia (CML), a disease characterized by the presence of a constitutively activated chimeric tyrosine kinase protein Bcr-AbI. However, drug resistance often occurs at later stages of the disease, principally because of the occurrence of mutations in the kinase domain. Second generation Bcr-AbI inhibitors, such as dasatinib and nilotinib are capable of inhibiting many imatinib-resistant forms of the kinase but not the form in which threonine is mutated to isoleucine at the gatekeeper position (T315I). In this study, we present the crystal structure of the kinase domain of the c-AbI T315I mutant, as well as the wild-type form, in complex with a pyrrolopyridine inhibitor, PPY-A. The side chain of Ile315 is accommodated in the AbI T315I mutant structure without large conformational changes proximal to the site of mutation. In contrast to other inhibitors, such as imatinib and dasatinib, PPY-A does not occupy the hydrophobic pocket behind the gatekeeper residue. This binding mode, coupled with augmented contacts with the glycine-rich loop, appears to be critical for its ability to override the T315I mutation. The data presented here may provide structural guidance for the design of clinically useful inhibitors of Bcr-AbI T315I.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.