Aerobic metabolic capacity was similar between juvenile Chinook salmon reared at 15 and 19°C and showed little change with acute warming to 23°C.
Early developmental stages of fishes are particularly sensitive to changes in environmental variables that affect physiological processes such as metabolism and growth. Both temperature and food availability have significant effects on the growth and survival of larval and juvenile fishes. As climate change and anthropogenic disturbances influence sensitive rearing environments of fishes it is unlikely that they will experience changes in temperature or food availability in isolation. Therefore, it is critical that we determine the effects of each of these potential stressors on larval growth and development, as well as understand the additive, synergistic or antagonistic effects of both. We reared threatened green sturgeon Acipenser medirostris (initial age ca. 32 days post hatch) at four temperatures (11, 13, 16 and 19°C) and two food availability rates (100% and 40% of optimal) to assess the effects of these stressors and their interactions on larval growth. We compared the overall size (fork length, total length and mass), growth rates (cm day−1 and g day−1) and relative condition factor of these larval and juvenile fish at 3 week intervals for up to 12 weeks. Our results indicated that temperature and food availability both had significant effects on growth and condition and that there was a significant interaction between the two. Fish reared with limited food availability exhibited similar patterns in growth rates to those reared with elevated food rates, but the effects of temperature were greatly attenuated when fish were food‐limited. Also, the effects of temperature on condition were reversed when fish were reared with restricted food, such that fish reared at 19°C exhibited the highest relative condition when fed optimally, but the lowest relative condition when food was limited. These data are critical for the development of relevant bioenergetics models, which are needed to link the survival of larval sturgeons with historic environmental regimes, pinpoint temperature ranges for optimal survival and help target future restoration sites that will be important for the recovery of sturgeon populations.
Larval sturgeon swimming capacity has never been assessed. We measured critical swimming velocity of larval green and white sturgeon, and summarized published juvenile critical swimming velocity data for all sturgeon species. Recommendations for anthropogenic water diversion facility flow management were developed from the data, emphasizing Californian green and white sturgeon conservation.
Predation is a common cause of early life stage mortality in fishes, with reduced risk as individuals grow and become too large to be consumed by gape-limited predatory fishes. Large-bodied species, such as sturgeon, may reach this size-refuge within the first year. However, there is limited understanding of what this size threshold is despite the value of this information for conservation management. We conducted laboratory-based predation experiments on juvenile green sturgeon, Acipenser medirostris, to estimate vulnerability to predation during outmigration from their natal reaches in California to the Pacific Ocean. Two highly abundant and non-native predatory fish species (largemouth bass, Micropterus salmoides, and striped bass, Morone saxatilis) were captured in the wild to be tested with developing juvenile green sturgeon from the UC Davis Green Sturgeon Broodstock Program. Experimental tanks, each containing five predators, received thirty prey for 24-hr exposures. Between sturgeon prey trials, predators were exposed to alternative prey species to confirm predators were exhibiting normal feeding behaviors. In addition to green sturgeon mortality data, trials were video recorded and predatory behaviors were quantified.Overall, these predator species displayed much lower rates of predation on juvenile green sturgeon than alternate prey. Predation decreased with green sturgeon size, and predation risk diminished to zero once sturgeon reached a length threshold of roughly 20-22 cm total length, or between 38% and 58% of predator total length. Behavioral analyses showed low motivation to feed on green sturgeon, with both predators attempting predation less frequently as sturgeon grew. Results of this study imply that optimizing growth rates for larval and juvenile sturgeon would shorten the time in which they are vulnerable to predation. Future experiments should assess predation risk of juvenile green sturgeon by additional predator species common to the Sacramento-San Joaquin watershed. K E Y W O R D S green sturgeon, largemouth bass, predation, striped bass 1 | INTRODUC TI ON Sturgeon populations across the globe have been experiencing drastic population declines. Consequently, sturgeon are the most threatened group of animals on the IUCN Red List of Threatened Species, with 63% of the species listed as Critically Endangered and 85% at risk of extinction (IUCN 2019). Sturgeon are large-bodied and long-lived, with unique reproductive strategies such as late maturation and infrequent | 15 BAIRD et Al. S U PP O RTI N G I N FO R M ATI O N Additional supporting information may be found online in the Supporting Information section. How to cite this article: Baird SE, Steel AE, Cocherell DE, Poletto JB, Follenfant R, Fangue NA. Experimental assessment of predation risk for juvenile green sturgeon, Acipenser medirostris, by two predatory fishes. J Appl Ichthyol.
Preferred water temperatures and acute temperature tolerance limits of two salmonids in California were assessed: juvenile Chinook salmon Oncorhynchus tshawytscha, a native anadromous species, and sub‐adult brook trout Salvelinus fontinalis, an introduced game species. These two species preferred similar temperatures across an 18 h temperature preference experiment and showed similar critical thermal tolerance limits, suggesting a substantial thermal habitat overlap in the wild.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.