Time-of-flight secondary ion mass spectrometry (ToF-SIMS) is advancing rapidly, providing instruments with growing capabilities and resolution. The data sets generated by these instruments are likewise increasing dramatically in size and complexity. Paradoxically, methods for efficient analysis of these large, rich data sets have not improved at the same rate. Clearly, more effective computational methods for analysis of ToF-SIMS data are becoming essential. Several research groups are customizing standard multivariate analytical tools to decrease computational demands, provide user-friendly interfaces, and simplify identification of trends and features in large ToF-SIMS data sets. We previously applied mass segmented peak lists to data from PMMA, PTFE, PET, and LDPE. Self-organizing maps (SOMs), a type of artificial neural network (ANN), classified the polymers based on their molecular composition and primary ion probe type more effectively than simple PCA. The effectiveness of this approach led us to question whether it would be useful in distinguishing polymers that were very similar. How sensitive is the technique to changes in polymer chemical structure and composition? To address this question, we generated ToF-SIMS ion peak signatures for seven nylon polymers with similar chemistries and used our up-binning and SOM approach to classify and cluster the polymers. The widely used linear PCA method failed to separate the samples. Supervised and unsupervised training of SOMs using positive or negative ion mass spectra resulted in effective classification and separation of the seven nylon polymers. Our SOM classification method has proven to be tolerant of minor sample irregularities, sample-to-sample variations, and inherent data limitations including spectral resolution and noise. We have demonstrated the potential of machine learning methods to analyze ToF-SIMS data more effectively than traditional methods. Such methods are critically important for future complex data analysis and provide a pipeline for rapid classification and identification of features and similarities in large data sets.
Indium nitride (InN) has been of significant interest for creating and studying two-dimensional electron gases (2DEG). Herein we demonstrate the formation of 2DEGs in ultrathin doped and undoped 2D InN nanosheets featuring high carrier mobilities at room temperature. The synthesis is carried out via a two-step liquid metal-based printing method followed by a microwave plasma-enhanced nitridation reaction. Ultrathin InN nanosheets with a thickness of ∼2 ± 0.2 nm were isolated over large areas with lateral dimensions exceeding centimeter scale. Room temperature Hall effect measurements reveal carrier mobilities of ∼216 and ∼148 cm2 V–1 s–1 for undoped and doped InN, respectively. Further analysis suggests the presence of defined quantized states in these ultrathin nitride nanosheets that can be attributed to a 2D electron gas forming due to strong out-of-plane confinement. Overall, the combination of electronic and plasmonic features in undoped and doped ultrathin 2D InN holds promise for creating advanced optoelectronic devices and functional 2D heterostructures.
The self-organizing map with relational perspective mapping (SOM-RPM) is an unsupervised machine learning method that can be used to visualize and interpret high-dimensional hyperspectral data. We have previously used SOM-RPM for the analysis of time-of-flight secondary ion mass spectrometry (ToF-SIMS) hyperspectral images and three-dimensional (3D) depth profiles. This provides insightful visualization of features and trends of 3D depth profile data, using a slice-by-slice view, which can be useful for highlighting structural flaws including molecular characteristics and transport of contaminants to a buried interface and characterization of spectra. Here, we apply SOM-RPM to stitched ToF-SIMS data sets, whereby the stitched data are used to train the same model to provide a direct comparison in both 2D and 3D. We conduct an analysis of spin-coated polyaniline (PANI) films on indium tin oxide-coated glass slides that were subjected to heat treatment under atmospheric conditions to model PANI as a conformal aerospace industry coating. Replicates were shown to be precisely equivalent, both spatially and by composition, indicating a clear threshold for annealing of the film. Quantitative assessment was performed on the chemical breakdown trends accompanying annealing based on peak ratios, while spectral analysis alone shows only very subtle differences which are difficult to evaluate quantitatively. The SOM-RPM method considers data sets in their totality and highlights subtle differences between samples often simply differences in peak intensity ratios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.