Because secretive marsh birds are difficult to detect, population status and habitat use for these birds are not well known. We conducted repeated surveys for secretive marsh birds across 264 sites in the Upper Mississippi River and Great Lakes Joint Venture region to estimate abundance, occupancy, and detection probabilities during the 2008 and 2009 breeding seasons. We identified species groups based on observed species co-occurrences. Two species, least bittern Ixobrychus exilis and American bittern Botaurus lentiginosus, co-occurred with other species less often than expected by chance, and two species groups, rails (Virginia rail Rallus limicola and sora Porzana carolina) and open-water birds (pied-billed grebe Podilymbus podiceps, common moorhen Gallinula chloropus, and American coot Fulica americana; coots were only surveyed in 2009), co-occurred more often than expected by chance. These groupings were consistent between years. We then estimated the relation of these species and groups to landscape and local site characteristics by using zero-inflated abundance models that accounted for incomplete detection. At the landscape level (5-km radius), the amount of emergent herbaceous wetland was positively associated with least bittern occupancy, whereas the amount of woody wetland was negatively associated with least bittern, rail, and open-water bird occupancy. At the local level, habitat variables that were associated with abundance were not consistent among groups or between years, with the exception that both least bitterns and open-water birds had a strong positive association between abundance and water–vegetation interspersion. Land managers interested in marsh bird management or conservation may want to consider focusing efforts on landscapes with high amounts of emergent herbaceous wetland and low amounts of woody wetland, and managing for high amounts of water–vegetation interspersion within the wetland.
Throughout many arid lands of Africa, Australia and the United States, wildlife agencies provide water year-round for increasing game populations and enhancing biodiversity, despite concerns that water provisioning may favor species more dependent on water, increase predation, and reduce biodiversity. In part, understanding the effects of water provisioning requires identifying why and when animals visit water. Employing this information, by matching water provisioning with use by target species, could assist wildlife management objectives while mitigating unintended consequences of year-round watering regimes. Therefore, we examined if weather variables (maximum temperature, relative humidity [RH], vapor pressure deficit [VPD], long and short-term precipitation) and predator-prey relationships (i.e., prey presence) predicted water visitation by 9 mammals. We modeled visitation as recorded by trail cameras at Sevilleta National Wildlife Refuge, New Mexico, USA (June 2009 to September 2014) using generalized linear modeling. For 3 native ungulates, elk (Cervus Canadensis), mule deer (Odocoileus hemionus), and pronghorn (Antilocapra americana), less long-term precipitation and higher maximum temperatures increased visitation, including RH for mule deer. Less long-term precipitation and higher VPD increased oryx (Oryx gazella) and desert cottontail rabbits (Sylvilagus audubonii) visitation. Long-term precipitation, with RH or VPD, predicted visitation for black-tailed jackrabbits (Lepus californicus). Standardized model coefficients demonstrated that the amount of long-term precipitation influenced herbivore visitation most. Weather (especially maximum temperature) and prey (cottontails and jackrabbits) predicted bobcat (Lynx rufus) visitation. Mule deer visitation had the largest influence on coyote (Canis latrans) visitation. Puma (Puma concolor) visitation was solely predicted by prey visitation (elk, mule deer, oryx). Most ungulate visitation peaked during May and June. Coyote, elk and puma visitation was relatively consistent throughout the year. Within the diel-period, activity patterns for predators corresponded with prey. Year-round water management may favor species with consistent use throughout the year, and facilitate predation. Providing water only during periods of high use by target species may moderate unwanted biological costs.
The invasive red imported fire ant (Solenopsis invicta) has negatively affected a host of taxonomic groups throughout its acquired North American range. Many studies have hypothesized indirect trophic impacts, but few documented those impacts. We evaluated invertebrate abundance as a factor limiting juvenile survival of the endangered Attwater's prairie‐chicken (Tympanuchus cupido attwateri), and whether fire ants reduce invertebrate numbers and biomass. From 2009–2013, we monitored survival of Attwater's prairie‐chicken broods (n = 63) with radio telemetry during the first 2 weeks post‐hatch and collected daily invertebrate samples at brood sites. Broods located in areas with the highest median invertebrate count (338 invertebrates/25 sweeps) had a survival probability of 0.83 at 2 weeks post‐hatch compared to 0.07 for broods located in areas with the lowest median invertebrate count (18 invertebrates/25 sweeps). During 2011–2012, we evaluated the reduction of fire ants on invertebrate numbers and biomass by aerially treating areas with Extinguish Plus™ in an impact‐reference study design. Treated fields had 27% more individual invertebrates and 26% higher invertebrate biomass than reference fields. Our results clearly document that invertebrate abundance affects Attwater's prairie‐chicken brood survival and that fire ants may indirectly contribute to low brood survival by suppressing invertebrate abundance. We posit that within the fire ant's acquired North American range, fire ants are likely contributing to declines of other insectivorous species. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.
Abstract. Robust models of wildlife population size, spatial distribution, and habitat relationships are needed to more effectively monitor endangered species and prioritize habitat conservation efforts. Remotely sensed data such as airborne laser altimetry (LiDAR) and digital color infrared (CIR) aerial photography combined with well-designed field studies can help fill these information voids. We used point count-based distance sampling survey data and LiDAR-fused CIR aerial photography to model density of the Golden-cheeked Warbler (Setophaga chrysoparia), an endangered songbird, on the 10 000-ha Balcones Canyonlands National Wildlife Refuge (BCNWR). We developed a novel set of candidate models to explain Golden-cheeked Warbler detection probability and density using habitat covariates characterizing vegetation structure, composition, and complexity as well as habitat fragmentation, topography, and human infrastructure. We had the most model support for covariates calculated using focal means representing a 3.2 ha territory size (100 m radius) vs. 1.8 and 7.0 ha territory sizes. Detection probability decreased with canopy cover and increased with topographic roughness. Golden-cheeked Warbler density increased with canopy cover, was highest at a 7:3 ratio of Ashe juniper (Juniperus ashei) to broadleaf tree canopy cover, and decreased with global solar radiation. Predicted warbler densities using 3 min point counts were similar to six estimates from independently collected warbler territory mapping on BCNWR with a mean difference of 6% and a Root Mean Squared Error of 1.88 males/40 ha. The total population size for BCNWR was estimated at 884 Golden-cheeked Warbler males (95% CI 662, 1206) and predicted densities across the refuge ranged from 0.0 to 0.50 male warblers per ha. On the basis of observed habitat relationships, we defined high quality habitat as having at least 60% canopy cover with Ashe juniper comprising 50-90% of the canopy. We estimated 48% of the area at BCNWR managed for Golden-cheeked Warblers was in high quality habitat conditions and identified patches within the lower habitat quality areas (14% of warbler management areas) that had the greatest potential to become high quality habitat with management. Our approach combined robust wildlife surveys with highly scalable remotely sensed data to examine habitat relationships, estimate population size, and identify existing areas of high quality habitat. This method can be applied to other species of conservation interest and can be used with multiple years of remotely sensed data to assess changes in habitat at local to regional scales.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.