Technological advances in DNA recovery and sequencing have drastically expanded the scope of genetic analyses of ancient specimens to the extent that full genomic investigations are now feasible and are quickly becoming standard1. This trend has important implications for infectious disease research because genomic data from ancient microbes may help to elucidate mechanisms of pathogen evolution and adaptation for emerging and re-emerging infections. Here we report a reconstructed ancient genome of Yersinia pestis at 30-fold average coverage from Black Death victims securely dated to episodes of pestilence-associated mortality in London, England, 1348–1350. Genetic architecture and phylogenetic analysis indicate that the ancient organism is ancestral to most extant strains and sits very close to the ancestral node of all Y. pestis commonly associated with human infection. Temporal estimates suggest that the Black Death of 1347–1351 was the main historical event responsible for the introduction and widespread dissemination of the ancestor to all currently circulating Y. pestis strains pathogenic to humans, and further indicates that contemporary Y. pestis epidemics have their origins in the medieval era. Comparisons against modern genomes reveal no unique derived positions in the medieval organism, indicating that the perceived increased virulence of the disease during the Black Death may not have been due to bacterial phenotype. These findings support the notion that factors other than microbial genetics, such as environment, vector dynamics and host susceptibility, should be at the forefront of epidemiological discussions regarding emerging Y. pestis infections.
Although investigations of medieval plague victims have identified Yersinia pestis as the putative etiologic agent of the pandemic, methodological limitations have prevented large-scale genomic investigations to evaluate changes in the pathogen's virulence over time. We screened over 100 skeletal remains from Black Death victims of the East Smithfield mass burial site (1348-1350, London, England). Recent methods of DNA enrichment coupled with high-throughput DNA sequencing subsequently permitted reconstruction of ten full human mitochondrial genomes (16 kb each) and the full pPCP1 (9.6 kb) virulence-associated plasmid at high coverage. Comparisons of molecular damage profiles between endogenous human and Y. pestis DNA confirmed its authenticity as an ancient pathogen, thus representing the longest contiguous genomic sequence for an ancient pathogen to date. Comparison of our reconstructed plasmid against modern Y. pestis shows identity with several isolates matching the Medievalis biovar; however, our chromosomal sequences indicate the victims were infected with a Y. pestis variant that has not been previously reported. Our data reveal that the Black Death in medieval Europe was caused by a variant of Y. pestis that may no longer exist, and genetic data carried on its pPCP1 plasmid were not responsible for the purported epidemiological differences between ancient and modern forms of Y. pestis infections.ancient DNA | paleopathology
High throughput sequencing (HTS) generates large amounts of high quality sequence data for microbial genomics. The value of HTS for microbial forensics is the speed at which evidence can be collected and the power to characterize microbial-related evidence to solve biocrimes and bioterrorist events. As HTS technologies continue to improve, they provide increasingly powerful sets of tools to support the entire field of microbial forensics. Accurate, credible results allow analysis and interpretation, significantly influencing the course and/or focus of an investigation, and can impact the response of the government to an attack having individual, political, economic or military consequences. Interpretation of the results of microbial forensic analyses relies on understanding the performance and limitations of HTS methods, including analytical processes, assays and data interpretation. The utility of HTS must be defined carefully within established operating conditions and tolerances. Validation is essential in the development and implementation of microbial forensics methods used for formulating investigative leads attribution. HTS strategies vary, requiring guiding principles for HTS system validation. Three initial aspects of HTS, irrespective of chemistry, instrumentation or software are: 1) sample preparation, 2) sequencing, and 3) data analysis. Criteria that should be considered for HTS validation for microbial forensics are presented here. Validation should be defined in terms of specific application and the criteria described here comprise a foundation for investigators to establish, validate and implement HTS as a tool in microbial forensics, enhancing public safety and national security.
The human microbiome contributes significantly to the genetic content of the human body. Genetic and environmental factors help shape the microbiome, and as such, the microbiome can be unique to an individual. Previous studies have demonstrated the potential to use microbiome profiling for forensic applications, however a method has yet to identify stable features of skin microbiomes that produce high classification accuracies for samples collected over reasonably long time intervals. A novel approach is described to classify skin microbiomes to their donors by comparing two features types, pangenome presence/absence features and nucleotide diversities of stable clade-specific markers. Supervised learning was used to attribute skin microbiomes from 14 skin body sites from 12 healthy individuals sampled at three time points over a>2.5 year period with accuracies up to 100% for three body sites. Feature selection identified a reduced subset of markers from each body site that are highly individualizing, identifying 187 markers from 12 clades. Classification accuracies were compared in a formal model testing framework, and the results of this indicate that learners trained on nucleotide diversity perform significantly better than those trained on presence/absence encodings. This study used supervised learning to identify individuals with high accuracy and associated stable features from skin microbiomes over a period of up to almost 3 years. These selected features provide a preliminary marker panel for future development of a robust and reproducible method for skin microbiome profiling for forensic human identification. A novel approach is described to attribute skin microbiomes, collected over a period of >2.5 years, to their individual hosts with a high degree of accuracy. Nucleotide diversities of stable clade-specific markers with supervised learning was used to classify skin microbiomes from a particular individual with up to 100% classification accuracy for three body sites. Attribute selection was used to identify 187 genetic markers from 12 clades which provide the greatest differentiation of individual skin microbiomes from 14 skin sites. This study performs skin microbiome profiling from a supervised learning approach and obtains high classification accuracy for samples collected from individuals over a relatively long time period for potential application to forensic human identification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.