Summary
The p53 tumor suppressor coordinates a series of anti-proliferative responses that restrict the expansion of malignant cells and, as a consequence, p53 is lost or mutated in the majority of human cancers. Here, we show that p53 restricts expression of the stem and progenitor cell-associated protein nestin in an Sp1/3 transcription factor-dependent manner and that nestin is required for tumor initiation in vivo. Moreover, loss of p53 facilitates dedifferentiation of mature hepatocytes into nestin-positive progenitor-like cells, which are poised to differentiate into hepatocellular carcinomas (HCCs) or cholangiocarcinomas (CCs) in response to lineage-specific mutations that target Wnt and Notch signaling, respectively. Many human HCCs and CCs show elevated nestin expression, which correlates with p53 loss of function and is associated with decreased patient survival. Therefore, transcriptional repression of Nestin by p53 restricts cellular plasticity and tumorigenesis in liver cancer.
Telomere shortening impairs liver regeneration in mice and is associated with cirrhosis formation in humans with chronic liver disease. In humans, telomerase mutations have been associated with familial diseases leading to bone marrow failure or lung fibrosis. It is currently unknown whether telomerase mutations associate with cirrhosis induced by chronic liver disease. The telomerase RNA component (TERC) and the telomerase reverse transcriptase (TERT) were sequenced in 1,121 individuals (521 patients with cirrhosis induced by chronic liver disease and 600 noncirrhosis controls). Telomere length was analyzed in patients carrying telomerase gene mutations. Functional defects of telomerase gene mutations were investigated in primary human fibroblasts and patient-derived lymphocytes. An increased incidence of telomerase mutations was detected in cirrhosis patients (allele frequency 0.017) compared to noncirrhosis controls (0.003,
P
value 0.0007; relative risk [RR] 1.859; 95% confidence interval [CI] 1.552–2.227). Cirrhosis patients with TERT mutations showed shortened telomeres in white blood cells compared to control patients. Cirrhosis-associated telomerase mutations led to reduced telomerase activity and defects in maintaining telomere length and the replicative potential of primary cells in culture.
Conclusion:
This study provides the first experimental evidence that telomerase gene mutations are present in patients developing cirrhosis as a consequence of chronic liver disease. These data support the concept that telomere shortening can represent a causal factor impairing liver regeneration and accelerating cirrhosis formation in response to chronic liver disease. (Hepatology 2011;)
SKCa activation drives the fate of pluripotent cells toward mesoderm commitment and cardiomyocyte specification, preferentially into nodal-like cardiomyocytes. This provides a novel strategy for the enrichment of cardiomyocytes and in particular, the generation of a specific subtype of cardiomyocytes, pacemaker-like cells, without genetic modification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.