Capsaicin, the primary pungent component of the chili pepper, has antitumor activity. Herein, we describe the activity of RPF151, an alkyl sulfonamide analogue of capsaicin, against MDA-MB-231 breast cancer cells. RPF151 was synthetized, and molecular modeling was used to compare capsaicin and RPF151. Cytotoxicity of RPF151 on MDA-MB-231 was also evaluated by the 3-[4,5-dimethylthiazol-2-yl]-2,5diphenyltetrazolium bromide (MTT) assay. Cell cycle analysis, by flow cytometry, and Western blot analysis of cycle-related proteins were used to evaluate the antiproliferative mechanisms. Apoptosis was evaluated by phosphatidyl-serine externalization, cleavage of Ac-YVAD-AMC, and Bcl-2 expression. The production of reactive oxygen species was evaluated by flow cytometry. RPF151 in vivo antitumor effects were investigated in murine MDA-MB-231 model. This study shows that RPF151 downregulated p21 and cyclins A, D1, and D3, leading to S-phase arrest and apoptosis. Although RPF151 has induced the activation of TRPV-1 and TRAIL-R1/DR4 and TRAIL-2/DR5 on the surface of MDA-MB-231 cells, its in vivo antitumor activity was TRPV-1-independent, thus suggesting that RPF151 should not have the same pungency-based limitation of capsaicin. In silico analysis corroborated the biological findings, showing that RPF151 has physicochemical improvements over capsaicin. Overall, the activity of RPF151 against MDA-MB-231 and its lower pungency suggest that it may have a relevant role in cancer therapy.
OBJECTIVE: To test the effectiveness of combining conventional antineoplastic drugs
(cisplatin and etoposide) with metformin in the treatment of non-small cell
lung cancer in the NCI-H460 cell line, in order to develop new therapeutic
options with high efficacy and low toxicity. METHODS: We used the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
(MTT) assay and calculated the combination index for the drugs studied. RESULTS: We found that the use of metformin as monotherapy reduced the metabolic
viability of the cell line studied. Combining metformin with cisplatin or
etoposide produced a synergistic effect and was more effective than was the
use of cisplatin or etoposide as monotherapy. CONCLUSIONS: Metformin, due to its independent effects on liver kinase B1, had
antiproliferative effects on the NCI-H460 cell line. When metformin was
combined with cisplatin or etoposide, the cell death rate was even
higher.
A novel class of benzo[d][1,3]dioxol-5-ylmethyl alkyl/aryl amide and ester analogues of capsaicin were designed, synthesized, and evaluated for their cytotoxic activity against human and murine cancer cell lines (B16F10, SK-MEL-28, NCI-H1299, NCI-H460, SK-BR-3, and MDA-MB-231) and human lung fibroblasts (MRC-5). Three compounds (5f, 6c, and 6e) selectively inhibited the growth of aggressive cancer cells in the micromolar (µM) range. Furthermore, an exploratory data analysis pointed at the topological and electronic molecular properties as responsible for the discrimination process regarding the set of investigated compounds. The findings suggest that the applied designing strategy, besides providing more potent analogues, indicates the aryl amides and esters as well as the alkyl esters as interesting scaffolds to design and develop novel anticancer agents.
Copper(II) complexes [Cu(H2O)2 (L1)(phen)](ClO4) (1) and [Cu(H2O)(L2)(phen)](ClO4) (2) (HL1 = naringenin; HL2 = hesperetin) were obtained, in which an anionic flavonoid ligand is attached to the metal center along with 1,10-phenanthroline (phen) as co-ligand. Complexes (1) and (2) were assayed for their cytotoxic activity against A549 lung carcinoma and against normal lung fibroblasts (LL-24) and human umbilical vein endothelial cells (HUVEC). We found IC50 = 16.42 µM (1) and IC50 = 5.82 µM (2) against A549 tumor cells. Complexes (1) and (2) exhibited slight specificity, being more cytotoxic against malignant than against non-malignant cells. 1 and 2 induced apoptosis on A549 cells in a mitochondria-independent pathway, and showed antioxidant activity. The antioxidant effect of the complexes could possibly improve their apoptotic action, most likely by a PI3K-independent reduction of autophagy. Complexes (1) and (2) interact in vitro with calf thymus DNA by an intercalative binding mode. EPR data indicated that 1 and 2 interact with human serum albumin (HSA) forming mixed ligand species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.