The systemic inflammatory response represents the core pathogenic event of sepsis, underlying clinical manifestations and laboratory findings in patients. Numerous studies have shown that CD4+CD25+ T lymphocytes, also known as regulatory T lymphocytes (Treg), participate in the development of sepsis due to their ability to suppress the immune response. The present article discusses the role of Treg lymphocytes in sepsis based on a specific search strategy (Latin American and Caribbean Health Sciences / Literatura Latino-americana e do Caribe em Ciências da Saúde-LILACS, PubMed, and Scientific Electronic Library Online-SciELO) focusing on two main topics: the participation of Treg cells in inflammation and immunity as well as perspectives in the computational physiological investigation of sepsis.
Despite advances in treatment and campaigns for prevention and control of malaria on
the various continents where it is still rampant, this disease remains significantly
relevant to the contemporary world. Plasmodium falciparum is the
organism that is mainly responsible for severe malaria, which is characterized by
disturbances in different organs and systems, with possibly fatal outcomes. Although
incipient, proteomic studies of malaria have yielded favorable prospects for
elucidating the biological aspects of Plasmodium as well as the
pathophysiological, diagnostic, prophylactic, and therapeutic mechanisms of the
disease. Thus, the aim of the present article is to present a brief review of the
applications of proteomic analysis in P. falciparum malaria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.