Objective:To explore the spectrum of skeletal muscle and nerve pathology of patients who died following SARS-CoV-2 infection and assess for direct viral invasion of these tissues.Methods:Psoas muscle and femoral nerve sampled from 35 consecutive autopsies of patients who died following SARS-CoV-2 infection and 10 SARS-CoV-2-negative controls were examined under light microscopy. Clinical and laboratory data were obtained by chart review.Results:In SARS-CoV-2-positive patients, mean age at death was 67.8 years (range 43-96 years) and the duration of symptom onset to death ranged from 1-49 days. Four patients had neuromuscular symptoms. Peak creatine kinase was elevated in 74% (mean 959 U/L, range 29-8413 U/L). Muscle showed type 2 atrophy in 32 patients, necrotizing myopathy in 9, and myositis in 7. Neuritis was seen in 9. Major histocompatibility complex-1 (MHC-1) expression was observed in all cases of necrotizing myopathy and myositis and 8 additional patients. Abnormal expression of myxovirus resistance protein A (MxA) was present on capillaries in muscle in 9 patients and in nerve in 7. SARS-CoV-2 immunohistochemistry was negative in muscle and nerve in all patients. In the 10 controls, muscle showed type 2 atrophy in all patients, necrotic muscle fibers in 1, MHC-1 expression in non-necrotic/non-regenerating fibers in 3, MxA expression on capillaries in 2, and inflammatory cells in none, and nerves showed no inflammatory cells or MxA expression.Conclusion:Muscle and nerve tissue demonstrated inflammatory/immune-mediated damage likely related to release of cytokines. There was no evidence of direct SARS-CoV-2 invasion of these tissues.Classification of evidence:This study provides class IV evidence that muscle and nerve biopsies document a variety of pathological changes in patients dying with COVID-19.
Background We sought to develop an automatable score to predict hospitalization, critical illness, or death for patients at risk for COVID-19 presenting for urgent care. Methods We developed the COVID-19 Acuity Score (CoVA) based on a single-center study of adult outpatients seen in respiratory illness clinics (RICs) or the emergency department (ED). Data was extracted from the Partners Enterprise Data Warehouse, and split into development (n = 9381, March 7-May 2) and prospective (n = 2205, May 3-14) cohorts. Outcomes were hospitalization, critical illness (ICU or ventilation), or death within 7 days. Calibration was assessed using the expected-to-observed event ratio (E/O). Discrimination was assessed by area under the receiver operating curve (AUC). Results In the prospective cohort, 26.1%, 6.3%, and 0.5% of patients experienced hospitalization, critical illness, or death, respectively. CoVA showed excellent performance in prospective validation for hospitalization (expected-to-observed ratio (E/O): 1.01, AUC: 0.76); for critical illness (E/O 1.03, AUC: 0.79); and for death (E/O: 1.63, AUC=0.93). Among 30 predictors, the top five were age, diastolic blood pressure, blood oxygen saturation, COVID-19 testing status, and respiratory rate. Conclusions CoVA is a prospectively validated automatable score for the outpatient setting to predict adverse events related to COVID-19 infection.
Objective Little is known about CSF profiles in patients with acute COVID-19 infection and neurological symptoms. Here, CSF was tested for SARS-CoV-2 RNA and inflammatory cytokines and chemokines and compared to controls and patients with known neurotropic pathogens. Methods CSF from twenty-seven consecutive patients with COVID-19 and neurological symptoms was assayed for SARS-CoV-2 RNA using quantitative reverse transcription PCR (RT-qPCR) and unbiased metagenomic sequencing. Assays for blood brain barrier (BBB) breakdown (CSF:serum albumin ratio (Q-Alb)), and proinflammatory cytokines and chemokines (IL-6, IL-8, IL-15, IL-16, monocyte chemoattractant protein −1 (MCP-1) and monocyte inhibitory protein – 1β (MIP-1β)) were performed in 23 patients and compared to CSF from patients with HIV-1 (16 virally suppressed, 5 unsuppressed), West Nile virus (WNV) ( n = 4) and 16 healthy controls (HC). Results Median CSF cell count for COVID-19 patients was 1 white blood cell/μL; two patients were infected with a second pathogen ( Neisseria , Cryptococcus neoformans ). No CSF samples had detectable SARS-CoV-2 RNA by either detection method. In patients with COVID-19 only, CSF IL-6, IL-8, IL-15, and MIP-1β levels were higher than HC and suppressed HIV (corrected- p < 0.05). MCP-1 and MIP-1β levels were higher, while IL-6, IL-8, IL-15 were similar in COVID-19 compared to WNV patients. Q-Alb correlated with all proinflammatory markers, with IL-6, IL-8, and MIP-1β ( r ≥ 0.6, p < 0.01) demonstrating the strongest associations. Conclusions Lack of SARS-CoV-2 RNA in CSF is consistent with pre-existing literature. Evidence of intrathecal proinflammatory markers in a subset of COVID-19 patients with BBB breakdown despite minimal CSF pleocytosis is atypical for neurotropic pathogens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.