Objective:To explore the spectrum of skeletal muscle and nerve pathology of patients who died following SARS-CoV-2 infection and assess for direct viral invasion of these tissues.Methods:Psoas muscle and femoral nerve sampled from 35 consecutive autopsies of patients who died following SARS-CoV-2 infection and 10 SARS-CoV-2-negative controls were examined under light microscopy. Clinical and laboratory data were obtained by chart review.Results:In SARS-CoV-2-positive patients, mean age at death was 67.8 years (range 43-96 years) and the duration of symptom onset to death ranged from 1-49 days. Four patients had neuromuscular symptoms. Peak creatine kinase was elevated in 74% (mean 959 U/L, range 29-8413 U/L). Muscle showed type 2 atrophy in 32 patients, necrotizing myopathy in 9, and myositis in 7. Neuritis was seen in 9. Major histocompatibility complex-1 (MHC-1) expression was observed in all cases of necrotizing myopathy and myositis and 8 additional patients. Abnormal expression of myxovirus resistance protein A (MxA) was present on capillaries in muscle in 9 patients and in nerve in 7. SARS-CoV-2 immunohistochemistry was negative in muscle and nerve in all patients. In the 10 controls, muscle showed type 2 atrophy in all patients, necrotic muscle fibers in 1, MHC-1 expression in non-necrotic/non-regenerating fibers in 3, MxA expression on capillaries in 2, and inflammatory cells in none, and nerves showed no inflammatory cells or MxA expression.Conclusion:Muscle and nerve tissue demonstrated inflammatory/immune-mediated damage likely related to release of cytokines. There was no evidence of direct SARS-CoV-2 invasion of these tissues.Classification of evidence:This study provides class IV evidence that muscle and nerve biopsies document a variety of pathological changes in patients dying with COVID-19.
Purpose of review Since its outbreak in Wuhan, China in late 2019, coronavirus disease-19 (COVID-19) has become a global pandemic. The number of affected cases and deaths continues to rise. Primarily a respiratory illness, COVID-19 is now known to affect various organ systems including peripheral nerve and skeletal muscle. The purpose of this review is to discuss the scope of neuromuscular manifestations and complications of COVID-19. Recent findings Several neuromuscular conditions, including Guillain-Barré syndrome, rhabdomyolysis, and myositis, have been reported in patients infected with COVID-19, but even with a temporal association, a causal relationship remains unproven. Direct invasion of neurons or myocytes by the virus, and immune-mediated injury have been speculated but not consistently demonstrated. In addition to potentially causing the above conditions, COVID-19 can trigger exacerbations of preexisting neuromuscular conditions such as myasthenia gravis, and severe infections can lead to critical illness myopathy/polyneuropathy. Summary COVID-19 appears to be potentially associated with a wide range of neuromuscular manifestations and complications. Further studies are needed to examine these possible associations, understand the pathogenesis, and develop preventive and treatment strategies.
BackgroundCentral nervous system (CNS) inflammation is a mediator of brain injury in HIV infection. To study the natural course of CNS inflammation in the early phase of infection, we analyzed longitudinal levels of soluble and cellular markers of inflammation in cerebrospinal fluid (CSF) and blood, beginning with primary HIV-1 infection (PHI).MethodsAntiretroviral-naïve subjects identified as having PHI (less than one year since HIV transmission) participated in phlebotomy and lumbar puncture at baseline and at variable intervals thereafter. Mixed-effects models were used to analyze longitudinal levels of CSF neopterin and percentages of activated cluster of differentiation (CD)4+ and CD8+ T-cells (co-expressing CD38 and human leukocyte antigen-D-related (HLA-DR)) in blood and CSF.ResultsA total of 81 subjects were enrolled at an average of 100 days after HIV transmission and had an average follow-up period of 321 days, with the number of visits ranging from one to 13. At baseline, the majority of subjects had CSF neopterin concentrations above the upper limit of normal. The baseline concentration was associated with the longitudinal trajectory of CSF neopterin. In subjects with baseline levels of less than 21 nmol/L, a cutoff value obtained from a mixed-effects model, CSF neopterin increased by 2.9% per 10 weeks (n = 33; P <0.001), whereas it decreased by 6.7% in subjects with baseline levels of more than 21 nmol/L (n = 11; P = 0.001). In a subset with available flow cytometry data (n = 42), the percentages of activated CD4+ and CD8+ T-cells in CSF increased by 0.8 (P <0.001) and 0.73 (P = 0.02) per 10 weeks, respectively.ConclusionsNeopterin levels and the percentages of activated CD4+ and CD8+ T-cells in CSF progressively increase in most subjects without treatment during early HIV-1 infection, suggesting an accrual of intrathecal inflammation, a major contributor to neuropathology in HIV infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.